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Why do ettects vary: The three C’s

1. Treatment Contrast

1. Program Group: the services received by the
program group

2. Control Group: the counterfactual services
received

2. Client Characteristics

3. Program Context
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Why are about cross-site impact variation?

* Overall average impacts can mask heterogeneity in
Impacts across sites

e This information...

— has substantive implications

— is necessary for planning multi-site experiments
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Site-level distribution of 1mpacts

Let
B; = True average treatment effect at site j
Then
J* B
) j=1"]
2
| (Bj - B)
T = lim -
2%t =0.20
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True Treatment Effect ———
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Data from large multi-site RCTs
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Estimation Model
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Estimation Model

Level 1 (clients):

Yij = r 1y RA_Blockyj + B;T Z —1 Y1 X1ij t+ €ij
: 3, an estimate of the treatment effect
Level 2 (sites): ,
for the average site

Where:

e;j~N (0, glgm(Tij)) 7, an estimate of the cross-site standard

b;~N (0, 12 y=—"""" deviation of site-average treatment

i~ (O,T

effects
Cov(eij,bj) =0

Policy Research




d
m rc »
BUILDING KNOWLEDCE m R
TO IMPROVE SOCIAL POLICY II‘ Y emll':ll

10



Selected Results

Head Start Impact Study (ES - Read) e, RO A 030
| After School Reading (ES-Read) 0.2 o004 Early
After School Math (ES - Math) 0.07*** 0.00 Childhood-
Elementary
Teach for America - Pooled (ES - Math) 0.10** 0.05*
e = RS _ — :
| Charter Middle Schools (ES-Read) -0.07  0.167 :
Enhanced Reading Opp’s (ES - Read) 0.07%** 0.08** Middle-
Teach for America - Math (ES - Math) 0.08*** 0.10%** High
Small High Schools of Choice (% on track) 10.3 *** 15.3 *** School
e P
EarIy College High School (% on track) 3.4 * g.2 x>
Learning Communities (credits, 1.5yrs) 0.4 0.0 Post-
Perform-based Scholarship (credits, 3yrs) 1.8 ** 1.3 * secondary
(20P.CorPs (VB YTl 3 YT ) o eeassssssssssnsans: AL ST, Labor
oI e Al e L S oo L S :

*p<.10 **p<.05 ***p<.01 11



Consistent zero average impact across sites
Afterschool Reading Program — Reading, yr 1
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Near zero average impact with a lot of

cross-site variation
Charter Middle School — Reading
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Consistent positive impacts across sites
Career Academies — Average yearly earnings, yrs 1-4
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Large average impacts with a lot of

cross-site variation
Welfare to Work — Average yearly earnings, yrs 1-2
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Discussion
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Minimum Detectable Effect Size (MDES)

1 (1—pc)(1—RZ, ..,
MDES; = M;_4 |(+ 1 A ~ Riwirnin))

Pc

\ ] nT(1—-T)

= a multiplier that rapidly approaches 2.8 as J increases (for a 2-tail test at
the 0.05 significance level with 80 percent power)

= number of sites
= number of individuals per site (assumed constant across sites)
= proportion of individuals randomized to treatment

= cross-site standard deviation of site-average program effects on
the z-score metric

= intra-class correlation for control group outcomes (i.e., the
proportion of total outcome variance explained by site indicators)

R(Zwithin) = proportion of within-site outcome variance explained by our

baseline covariates
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(MDES) by (# of Sites) by (Tau)
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When do eftects vary across sites a little vs. a lot?

Services &
. .e. Outcomes
Activities (T=1)
- (T=1) ) -
Treatment Program
TC-= - -
Contrast Effect
) Ser\{lc.e.s. & Outcomes -
Activities (T=0)
(T=0) )

Hypothesis: When the site-average TCs varies a lot

across sites, so will treatment effects
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When do eftects vary across sites a little vs. a lot?

TC; = Sjir=1 — Sjir=0
Hypothesis:

As Var(TC) increases, so does T

VaT(T_C) = VaT(S_'T=1) + Var(§T=0) — ZCOV(§T=1, §T=O)
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When to expect a large Var(TC) (and 1)
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Low specificity of the program model

A high proportion of formal education is altered by the
intervention

When treatment and control group members from the same
“site” are served in a different setting for a high proportion of
their formal education experience
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Selected Results

| Head Start Impact Study (€5 -Read) 0,20 ... 0307 5
After School Reading (ES - Read) -0.02 0.04 Early
After School Math (ES - Math) 0.07*** 0.00 Childhood-
Elementary
Teach for America - Pooled (ES - Math) 0.10** 0.05*
Tenmessee STAR(ES-Read) 018 B |
| Charter iddle Schools (€5 Read) . 0.0 0.16% :
Enhanced Reading Opp’s (ES - Read) 0.07%** 0.08** Middle-
Teach for America - Math (ES - Math) 0.08*** 0.10%*** High
- SmaI - |gh S choolsofCh 0|ce(%ontr ack) ................ e i T School
Career Academ|es (avgyearly Syrsl4)1883*** .............. e -
oy ot g vl pomse) o T |
Learning Communities (credits, 1.5yrs) 0.4 0.0 Post-
Perform:-based Scholarship (credits, 3yrs)___........ R SR _Secondary
E Job Corps (avg yearly S, yr 4) 1,415*** 1,687** Labor
Welfare to-Work (avg yearly S, yrs 1-2) 670%** B01***

*p<.10 **p<.05 ***p<.01 22



What about Client Characteristics?

* For many characteristics (e.g., prior
achievement) most variation is within sites

* We suspect cross-site impact variation driven
by cross-site variation in client characteristics
may be hard to predict
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What about Context?

* We suspect contextual moderation often
occurs through the treatment contrast
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