How Much Do Effects Vary Across Sites?

Evidence From Existing Multisite Randomized Trials

Stanford Workshop July 18, 2016

Michael J. Weiss¹, Howard S. Bloom¹, Natalya Verbitsky-Savitz², Himani Gupta¹, Alma Vigil², Dan Cullinan¹

¹MDRC ²Mathematica Policy Research

Outline

- Why do Effects Vary and Why Should we Care?
- Cross-site Distribution of Effects Defined
- Data
- Estimation
- Empirical Results
- Discussion
 - Implications for designing studies
 - When to expect a lot of x-site impact variation

Why do effects vary: The three C's

1. Treatment Contrast

- 1. <u>Program Group</u>: the services received by the program group
- 2. <u>Control Group</u>: the counterfactual services received

2. Client Characteristics

3. Program Context

Why are about cross-site impact variation?

 Overall average impacts can mask heterogeneity in impacts across sites

- This information...
 - has <u>substantive</u> implications
 - is necessary for planning multi-site experiments

Site-level distribution of impacts

<u>Let</u>:

 B_j = True average treatment effect at site j

Then:

$$\beta \equiv \lim_{J^* \to \infty} \frac{\sum_{j=1}^{J^*} B_j}{J^*}$$

$$\tau \equiv \lim_{J^* \to \infty} \sqrt{\frac{\sum_{j=1}^{J^*} (B_j - \beta)^2}{J^*}}$$

MATHEMATICAPolicy Research

Data

Data from large multi-site RCTs

Early Childhood- Element. School	Middle School-High School	Post-secondary Education	Labor Market Programs
Head Start Program (Abt)	Charter Middle Schools (<i>Mathematica)</i>	Learning Communities (MDRC)	Job Corps (Mathematica)
After School – Reading Program (MDRC)	Teach for America – Math (Mathematica)	Performance-based Scholarships (MDRC)	Welfare-to-Work Programs (MDRC)
After School – Math Program (MDRC)	Enhanced Reading Opportunity (MDRC)	•	
Teach for America – Pooled (i3, National) (Mathematica)	Small Schools of Choice (MDRC)		
Tennessee STAR	Career Academies (MDRC)		
	Early College H.S. (Abt)		

Estimation Model

Estimation Model

Level 1 (clients):

$$Y_{ij} = \sum_{r=1}^{R} \alpha_r RA_Block_{rij} + B_j T_{ij} + \sum_{l=1}^{L} \gamma_l X_{lij} + e_{ij}$$

Level 2 (sites):

$$B_i = \beta + b_i$$

 $\hat{\beta}$, an estimate of the treatment effect for the average site

Where:

$$e_{ij} \sim N\left(0, \sigma_{|X\alpha}^{2}(T_{ij})\right)$$

$$b_{j} \sim N(0, \tau^{2})$$

$$Cov(e_{ij}, b_{i}) = 0$$

 $\hat{\tau}$, an estimate of the cross-site standard deviation of site-average treatment effects

Results

Selected Results

Int	ervention	$\widehat{oldsymbol{eta}}$ - mean	$\widehat{ au}$ - s.d.		
He	ad Start Impact Study (ES - Read)	0.20***	0.30***		
Aft	er School Reading (ES - Read)	-0.02	0.04	Early Childhood- Elementary	
Aft	er School Math (ES - Math)	0.07***	0.00		
Tea	ich for America - Pooled (ES - Math)	0.10**	0.05*		
Ter	nnessee STAR (ES - Read)	0.15***	0.23***		
Cha	arter Middle Schools (ES - Read)	-0.07	0.16***		
Enł	nanced Reading Opp's (ES - Read)	0.07***	0.08**	Middle- High	
Tea	ich for America - Math (ES - Math)	0.08***	0.10***		
Sm	all High Schools of Choice (% on track)	10.3 ***	15.3 ***	School	
Car	eer Academies (avg yearly \$, yrs 1-4)	1,883.00***	0.0		
Ear	ly College High School (% on track)	3.4 *	8.2 ***		
Lea	arning Communities (credits, 1.5yrs)	0.4	0.0	Post- secondary	
Per	form-based Scholarship (credits, 3yrs)	1.8 **	1.3 *		
Job	Corps (avg yearly \$, yr 4)	1,415.00***	1,687.00**	Labor	
We	lfare-to-Work (avg yearly \$, yrs 1-2)	670.00***	601.00***		
*p<.10 **p<.05 ***p<.01				11	

Consistent zero average impact across sites

Afterschool Reading Program – Reading, yr 1

MATHEMATICA Policy Research

Near zero average impact with a lot of cross-site variation

Charter Middle School – Reading

MATHEMATICA Policy Research

Consistent positive impacts across sites

Career Academies – Average yearly earnings, yrs 1-4

Large average impacts with a lot of cross-site variation

Welfare to Work – Average yearly earnings, yrs 1-2

Discussion

Minimum Detectable Effect Size (MDES)

$$MDES_{Z} = M_{J-1} \sqrt{\left(\frac{1}{J}\right) \left(\tau_{Z}^{2} + \frac{(1 - \rho_{C})(1 - R_{(within)}^{2})}{n\bar{T}(1 - \bar{T})}\right)}$$

Where:

 M_{J-1} = a multiplier that rapidly approaches 2.8 as J increases (for a 2-tail test at the 0.05 significance level with 80 percent power)

I = number of sites

n = number of individuals per site (assumed constant across sites)

 \overline{T} = proportion of individuals randomized to treatment

 au_Z = cross-site standard deviation of site-average program effects on the z-score metric

 ρ_C = intra-class correlation for control group outcomes (i.e., the proportion of total outcome variance explained by site indicators)

 $R_{(within)}^2$ = proportion of within-site outcome variance explained by our baseline covariates

(MDES) by (# of Sites) by (Tau)

Assuming: R^2 = 0.50, σ_Z^2 = 1, n = 75 and \overline{T} = 0.5

Slide 18

mjw6 Check this...

Mike Weiss, 7/11/2016

When do effects vary across sites a little vs. a lot?

Hypothesis: When the site-average TCs varies a lot across sites, so will treatment effects

When do effects vary across sites a little vs. a lot?

$$\overline{TC_j} \equiv \overline{S_j}_{|T=1} - \overline{S_j}_{|T=0}$$

Hypothesis:

As $Var(\overline{TC})$ increases, so does τ

$$Var(\overline{TC}) = Var(\overline{S}_{T=1}) + Var(\overline{S}_{T=0}) - 2Cov(\overline{S}_{T=1}, \overline{S}_{T=0})$$

When to expect a large $Var(\overline{TC})$ (and τ)

$$Var(\overline{TC}) = Var(\overline{S}_{T=1}) + Var(\overline{S}_{T=0}) - 2Cov(\overline{S}_{T=1}, \overline{S}_{T=0})$$

- Low specificity of the program model
- A high proportion of formal education is altered by the intervention
- When treatment and control group members from the same "site" are served in a different setting for a high proportion of their formal education experience

Selected Results

	Intervention	$\widehat{oldsymbol{eta}}$ - mean	$\hat{ au}$ - s.d.		
i	Head Start Impact Study (ES - Read)	0.20***	0.30***		
	After School Reading (ES - Read)	-0.02	0.04	Early Childhood- Elementary	
	After School Math (ES - Math)	0.07***	0.00		
	Teach for America - Pooled (ES - Math)	0.10**	0.05*		
	Tennessee STAR (ES - Read)	0.15***	0.23***		
	Charter Middle Schools (ES - Read)	-0.07	0.16***		
	Enhanced Reading Opp's (ES - Read)	0.07***	0.08**	Middle-	
	Teach for America - Math (ES - Math)	0.08***	0.10***	High School	
	Small High Schools of Choice (% on track)	10.3***	15.3***		
	Career Academies (avg yearly \$, yrs 1-4)	1,883***	0.0		
	Early College High School (% on track)	3.4*	8.2***		
	Learning Communities (credits, 1.5yrs)	0.4	0.0	Post-	
	Perform-based Scholarship (credits, 3yrs)	1.8**	1.3*	secondary	
	Job Corps (avg yearly \$, yr 4)	1,415***	1,687**	Labor	
	Welfare-to-Work (avg yearly \$, yrs 1-2)	670***	601***		
7	*p<.10 **p<.05 ***p<.01			22	

What about Client Characteristics?

 For many characteristics (e.g., prior achievement) most variation is within sites

 We suspect cross-site impact variation driven by cross-site variation in client characteristics may be hard to predict

What about Context?

 We suspect contextual moderation often occurs through the treatment contrast

Funding

- Spencer Foundation
- IES

"The research reported here was supported by the **Institute of Education Sciences**, U.S. Department of Education, through Grant R305D140012 to MDRC. The opinions expressed are those of the authors and do not represent views of the Institute or the U.S. Department of Education"

How Much Do Effects Vary across Sites?

Evidence from Existing Multisite Randomized Trials

QUESTIONS?

