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Abstract

Early childhood education research often compares a group of children who receive the

intervention of interest to a group of children who receive care in a range of different care settings.

In this paper, we estimate differential impacts of an early childhood intervention by alternative

care setting, using data from the Head Start Impact Study, a large-scale randomized evaluation.

To do so, we utilize a Bayesian principal stratification framework to estimate separate impacts

for two types of Compliers: those children who would otherwise be in other center-based care

when assigned to control and those who would otherwise be in home-based care. We find strong,

positive short-term effects of Head Start on receptive vocabulary for those Compliers who would

otherwise be in home-based care. By contrast, we find no meaningful impact of Head Start on

vocabulary for those Compliers who would otherwise be in other center-based care. Our findings

suggest that alternative care type is a potentially important source of variation in early childhood

education interventions.

1 Introduction

Access to publicly funded prekindergarten in the United States has expanded substantially in

recent years. In the last decade, the percentage of U.S. four-year-old children enrolled in public

preschool has increased by one-third—from 31 to 40 percent—with some states now serving nearly

90 percent of all four-year-old children through publicly funded preschool programs (Barnett et al.,

2014). Many cities, such as Boston, Los Angeles, New York, and Washington, D.C., have added to

this expansion through locally-funded prekindergarten programs. The Obama Administration has

called for additional funds to support even greater access to high-quality early childhood education

across the country.

Those who support the expansion of publicly funded preschool point to nearly 50 years of re-

search indicating that participation in high-quality pre-school programs can yield individual and
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societal benefits in both the short and long term, often highlighting historically important inter-

ventions such as the Perry Preschool Project (e.g., Barnett, 1995; Heckman, 2006). Opponents

argue that current public preschool programs, especially Head Start, the largest and most promi-

nent public preschool program in the United States, have failed to replicate these initial successes

at scale (e.g., Coulson, 2013; Whitehurst, 2013b). This belief stems in part from the results of

the Head Start Impact Study (HSIS), a randomized evaluation that found that the opportunity

to enroll in Head Start improved children’s performance on short term measures of cognitive and

social-emotional development but that, in general, these initial impacts were no longer apparent

after children finished first grade (Puma et al., 2010a).

Researchers and policymakers have posited a wide range of explanations for differences between

the Head Start results and those of early model programs like Perry preschool, including differences

in program features, program intensity, and program targeting (Barnett, 2011; Bitler et al., 2014;

Elango et al., 2015). We focus on one prominent explanation: that the care settings of control group

children attenuated the reported effects for Head Start (e.g., National Forum on Early Childhood

Policy and Programs, 2010). In the Perry Preschool Project, all control group children were cared

for in their homes by a parent or other adult. By contrast, in the Head Start Impact Study, roughly

one-third of children not in Head Start enrolled in other center-based care, with services similar to

those provided by Head Start, instead of receiving care in a home-based setting.

In this paper, we conduct a comprehensive analysis of the differential impact of enrolling in

Head Start by the setting in which children would otherwise receive care. Our main result is

that enrollment in Head Start yields strong, positive short-term effects on a measure of receptive

vocabulary among those children who would enroll in Head Start when offered the opportunity to

do so but who would otherwise be cared for by a parent or other caregiver at home or in a home-

based setting. For this group of children, we estimate that, after one year, enrollment in Head Start

improved children’s performance by over 0.2 standard deviations, more than 50 percent larger than

the corresponding intent-to-treat estimates reported in Puma et al. (2010a). By contrast, we find

no meaningful impact of Head Start for those children who would otherwise enroll in non-Head

Start center-based care.1

Our analysis makes three main substantive contributions. First, we find meaningful impact

variation by alternative care type that is masked by the HSIS topline results. This suggests that

sweeping claims of Head Start’s ineffectiveness (e.g., Whitehurst, 2013a) are misplaced, at least in

terms of impact on receptive vocabulary. At the same time, we find no evidence that other center-

based alternatives are more effective than Head Start on average, despite research arguing that this

might be the case (Gormley et al., 2010). Second, this pattern of impact variation broadly holds

across outcome quantiles (Bitler et al., 2014) and within key subgroups (Bloom and Weiland, 2014),

although these estimates are imprecise. We find especially large impacts among Dual-Language

Learner children who would otherwise be in home-based care. Third, consistent with the HSIS

1These results are corroborated in independent work by Kline and Walters (2015), who find the same general
pattern using a structural model. We compare our approaches in Section 7.
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results (Puma et al., 2010a), we find that, while the impact of Head Start indeed declines over

time, it is a gradual decline rather than the rapid attenuation identified by prior work (Gibbs et al.,

2011). We also find modest evidence of positive impacts of Head Start through first grade.

Our paper also makes several methodological contributions. First, we set up an approach for

identifying and estimating impacts in the presence of multiple counterfactual treatment options,

which is common in early childhood education studies and in program evaluation more gener-

ally (e.g., Heckman et al., 2000; Duncan and Magnuson, 2013). To do so, we use the principal

stratification framework of Frangakis and Rubin (2002), which is a generalization of the usual in-

strumental variables (IV) approach for non-compliance in randomized experiments (Angrist et al.,

1996). In the standard IV case, the goal is to estimate the impact of randomization for Compliers,

known as the Local Average Treatment Effect (LATE). In HSIS, Compliers are children who would

enroll in Head Start under treatment and would not enroll in Head Start under control. In our

analysis, we are instead interested in two different types of Compliers: Center-based Compliers,

children who would enroll in Head Start under treatment and would enroll in other center-based

care under control, and Home-based Compliers, children who would enroll in Head Start under

treatment and would otherwise enroll in home-based care. This approach yields two LATEs, rather

than just one.

Identifying and estimating impacts for these subgroups is challenging. Extending results from

the IV setting (Imbens and Rubin, 1997b; Abadie, 2003), we first show that a range of quantities of

interest can be immediately estimated using moment-based methods, including the relative sample

shares of Center- and Home-based Compliers and the outcome distributions for these groups un-

der control. The outcome distributions under treatment, however, are more difficult to estimate.

To overcome these obstacles, we therefore utilize a hierarchical Bayesian modeling approach (e.g.,

Imbens and Rubin, 1997a). In addition to providing a natural paradigm for causal inference with

potential outcomes, this approach easily allows us to account for many of the real-world compli-

cations in the Head Start Impact Study, including missing data and a multilevel structure, with

children nested within Head Start centers. We estimate this model via an implementation of Hamil-

tonian Monte Carlo called Stan (Stan Development Team, 2014), which builds on recent advances in

Bayesian computation. To the best of our knowledge, this is the first implementation of a principal

stratification model with site-level random effects.

We organize the paper as follows. Section 2 gives background on Head Start and the principal

stratification approach. Section 3 describes the HSIS data. Sections 4 and 5 provide an overview of

the analytic framework and give some descriptive information about the principal strata. Section 6

gives an overview of our identification and estimation approaches. Section 7 presents our results.

We close with a discussion of the substantive implications for this work for early childhood policy

and reflect on the broader methodological implications. We defer all detailed technical discussions

and proofs to the appendix.
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2 Background

2.1 Background on Head Start and the Head Start Impact Study

Originally launched in the summer of 1965 as a two-month intervention to help low-income children

prepare for kindergarten, Head Start programs across the United States currently provide early

childhood education and family support services to more than 900,000 low-income children and

their families each year. Head Start services are administered by nearly 1,600 local grantee agen-

cies that receive a total of $8 billion in annual state and federal funds (Administration for Children

and Families, 2014). Today, Head Start programs must adhere to a set of performance standards

that specify requirements for program services, curricula, teacher preparation and professional de-

velopment. For example, current Head Start classes serving four or five-year-olds can have no more

than 20 children, and those serving three-year olds can have no more than 17 children. Programs

must screen all enrolled children for developmental, sensory, and behavioral disabilities and have a

written curricula to support each child’s cognitive and language development. Head Start programs

are also required to engage in collaborative partnership-building with parents through processes

that include structured home visits, parenting education classes, and assistance in accessing food,

housing, clothing, and transportation.

Researchers and policy makers have debated the effectiveness of Head Start since the program’s

inception. In their summary of the initial research on Head Start from the 1960s, Zigler and Muen-

chow (1992) show that children enrolled in these early evaluations of Head Start exhibited large

gains on measures of cognitive achievement between their initial enrollment and program comple-

tion. Excitement regarding these impressive findings was soon tempered, however, by additional

research indicating that the effects of Head Start participation were no longer apparent once chil-

dren reached elementary school (Westinghouse Learning Corporation, 1969). Nevertheless, many of

the quasi-experimental studies that followed over the next four decades indicated positive impacts

of Head Start on a range of outcomes from short-term academic skill development to long-term

outcomes measured in adulthood (e.g., Currie and Thomas, 1993; Garces et al., 2002; Ludwig and

Miller, 2007; Deming, 2009; Carneiro and Ginja, 2014).

The mixed results of the randomized Head Start Impact Study did little to settle this de-

bate (National Forum on Early Childhood Policy and Programs, 2010). Nonetheless, the rich HSIS

data has led to a host of secondary analyses. Bloom and Weiland (2014) and Walters (2015), for ex-

ample, examine impact variation across Head Start centers, finding substantial heterogeneity. Bitler

et al. (2014) use quantile regression to examine impact variation across the entire outcome distribu-

tion, finding substantially larger effects for children with low scores. Bitler et al. (2014) and Bloom

and Weiland (2014) also examine heterogeneity across important subgroups, with both studies

highlighting significantly larger effects among Dual-Language Learners than among native English

speaking students. Finally, other studies, such as Gelber and Isen (2013) and Miller et al. (2014),

find that parents play an important role in the effects of Head Start.
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2.2 Heterogeneity by Alternative Care Type

The goal of this paper is to explore a specific type of impact heterogeneity: whether or not the

impact of Head Start varies by alternative care type. There is substantial evidence in the literature

suggesting that this might be the case. First, a recent meta-analysis of 28 studies of Head Start

conducted between the program’s inception and 2007 found that much of the variation in the

findings regarding Head Start’s impact on child achievement and cognitive development could be

explained by differences in the types of preschool services used by the control group (Shager et al.,

2013). Although studies of Head Start programs yielded overall positive effects on short term

indicators of children’s cognitive skills and achievement, with average effect sizes of +0.27, those

studies in which the children in the control group experienced other forms of center-based care

yielded significantly smaller effects as compared to those studies of Head Start in which control

group children received no additional services (see also Duncan and Magnuson, 2013, for a broader

discussion of the counterfactual problem). Zhai et al. (2011) find a similar result using longitudinal

data from the Fragile Families and Child Wellbeing Study, concluding that impacts of Head Start

were largest relative to non-center-based care.

Second, a few authors have used HSIS data to address this question. Using a matching ap-

proach, Zhai et al. (2014) find significant effects of Head Start compared to parent care and rela-

tive/nonrelative care but find no meaningful differences in outcomes between Head Start and other

center-based care. Using variation across sites, Walters (2015) finds that impacts are smaller for

Head Start centers that draw more children from other center-based programs rather than from

home-based care. Finally, using a structural model, Kline and Walters (2015) find that the effects

of Head Start are larger relative to home-based care than relative to other center-based care. We

discuss the relationship between our results and those of Kline and Walters (2015) in Section 7.

At the same time, some authors have argued against alternative care type as an important source

of impact variation. Bitler et al. (2014), for example, find no relationship between observed impacts

and the distribution of counterfactual care type across a range of subgroups in HSIS. Barnett (2011)

points to the Abecedarian study, initially launched in 1972, which demonstrated large, sustained

program impacts, even though roughly two-thirds of control group children attended high-quality

center care.

2.3 Principal Stratification

There is a small but growing literature on the use of model-based principal stratification in social

science applications. Page et al. (2015) provide a recent non-technical review (see also Schochet

et al., 2014). Some previous education examples include Barnard et al. (2003) on the effect a

randomized lottery for private school voucher use in New York City with complex noncompli-

ance patterns (see also, Jin and Rubin, 2009); Page (2012) on the relative importance of student

exposure to the labor market in career academy high schools; and Schochet (2013) on student mo-

bility in school-based randomized trials. Outside of education, several studies have used principal

stratification to analyze the JobCorps evaluation (e.g., Zhang et al., 2009; Frumento et al., 2012)

5



and JOBS II evaluation (Mattei et al., 2013). Finally, a separate series of papers use a principal

score approach, rather than model-based inference, to estimate similar quantities of interest. The

key assumption with this approach is principal ignorability : conditional on covariates, stratum

membership is ignorable. Examples include Hill et al. (2002), who analyze the Infant Home Devel-

opment Program, Schochet and Burghardt (2007), who analyze the JobCorps data, Jo and Stuart

(2009), who analyze the JOBS II data, and Scott-Clayton and Minaya (2014), who analyze student

employment data.

3 Head Start Impact Study

3.1 Overview

Our primary source of data is the HSIS, which was conducted within oversubscribed Head Start

centers throughout the U.S. In the HSIS, children randomized to treatment were offered enrollment

in a Head Start program for the 2002-2003 school year, while children randomized to control were

not offered enrollment. In total, 4,440 children, aged either three or four years old, were randomized

to treatment or control across 351 Head Start centers. We exclude all children from Puerto Rico,

because they are not available in the public use data set. The randomization itself was complex;

treatment probabilities varied by the child’s age, the date the child was first put on a Head Start

center wait list, and the distribution of eligible children across neighboring Head Start centers.2

While it is infeasible to recreate the true randomization procedure using currently available data,

we can approximately account for the complex structure of the randomization by analyzing the

data as if randomization were conducted separately within each center. After excluding children

from centers that did not have at least one child in each experimental condition, we obtain a data

set with 4,385 children across 340 Head Start centers. We refer to the first year of the study as the

Head Start year.

3.2 Outcomes

The HSIS research team collected a wide array of outcomes on children in the sample. A key re-

quirement of our analytic approach, however, is the ability to find a close parametric approximation

to the underlying outcome distribution. Therefore, we currently cannot assess several important

cognitive outcomes, such as the Woodcock-Johnson III Applied Problems test, and social-emotional

outcomes, such as externalizing behavior, since they are poorly suited to typical parametric ap-

proximations, even conditional on covariates.

We therefore restrict our analysis to the Peabody Picture Vocabulary Test (PPVT), a stan-

dardized measure of children’s receptive vocabulary in which the evaluator shows the child a page

containing three to four pictures and asks the child to identify the picture that best represents

2The official HSIS report also uses a complex set of weights to extrapolate the experimental results to a “nationally
representative” population of potentially eligible Head Start children (see Gibbs et al., 2011, for a discussion). We
do not use those weights here, instead focusing on the results for the experimental sample.
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the meaning of a word presented orally by the assessor. See Puma et al. (2010b, section 3-10) for

additional details on the exact form of the PPVT. The PPVT is our variable of choice for two

reasons. First, the PPVT, which is derived from an item response theory score, is unimodal and

roughly bell-shaped. Second, the PPVT is a widely used assessment and is predictive of key skills

later in life (Romano et al., 2010). Based on results from the pre-test, the average child at the

beginning of the HSIS performed at roughly the 30th percentile of national PPVT performance,

reflecting this group’s relative disadvantage in pre-academic skills.

An important complication in the HSIS is the high proportion of missing outcomes. Overall,

around 18 percent of PPVT scores are missing in the Head Start year, increasing to around 22

percent two years later. Twenty five percent of PPVT pre-test scores are missing. Furthermore,

treatment group children are much more likely to have observed outcomes than control group

children: in the Head Start year, 24 percent of control group children have missing PPVT scores,

compared to just 13 percent of treatment group children. Around 40 percent of children are missing

at least one PPVT score from the pre-test, the Head Start year, the first follow-up year, or the

second follow-up year; around 10 percent do not have an observed PPVT score for any of these

four tests.

3.3 Covariates

Covariates play a particularly important role in principal stratification models. Zhang et al. (2009)

point to two main functions. First, covariates can be predictive of the outcome and stratum

membership. Second, parametric assumptions can often be more plausible conditional on covariates

than marginally. For additional discussion, see Hirano et al. (2000); Jo (2002); Jo and Stuart (2009);

Ding et al. (2011); Feller (2015).

Thankfully, the HSIS data set includes a rich set of covariates on child and family charac-

teristics. As part of a broader research effort, we also appended center-level characteristics and

neighborhood-level variables for the area around each child’s Head Start center of random assign-

ment. Neighborhood-level information includes geocoded data from the 2000 Census, the 2002

Business Census, the Department of Education, and the FBI crime database (McCoy et al., 2014).

Table 1 assesses balance across conditions for the HSIS covariates we use in our analysis. The

left column shows the covariate mean for those children assigned to the control group. The middle

column shows the difference between covariate means in the treatment and control groups. Finally,

the right column shows the normalized differences, a standardized measure of covariate balance

across treatment conditions (Imai et al., 2008; Imbens and Rubin, 2015). There is excellent covariate

balance between treatment and control groups, with all normalized differences below 0.1 in absolute

value.

Overall, HSIS children had diverse background characteristics (reporting control group means

for simplicity): around 30 percent identified as Black, 37 percent as Hispanic, 29 percent spoke

a non-English language at home, roughly half lived with both biological parents, and one-fifth

had a mother who was a recent immigrant. The children generally come from disadvantaged
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households: around 70 percent have a mother with at most a high school degree or GED, and

around 80 percent have an assessed family risk that is moderate to high.3 As would be expected,

the children’s households are generally situated in disadvantaged neighborhoods. Based on the

census data for the Head Start centers, nearly one-quarter of neighborhood households were in

poverty. Further, while the national unemployment rate in the US was roughly four percent in

2000, the unemployment rate in these communities was nearly eleven percent, although there is

substantial heterogeneity across neighborhoods (McCoy et al., 2014).

3.4 Child Care Setting

Standard practice in early childhood education research is to divide care settings into home-based

versus center-based care (e.g., Gormley, 2007). Given our main substantive question, we therefore

categorize care settings into three main groups: Head Start, non-Head Start center care, and home

care. Home care encompasses a variety of home-based settings including being cared for by a parent

at home (73 percent), being cared for in a non-relative home-based child care setting (11 percent),

being cared for by a relative in that relative’s home (9 percent), and being cared for by a non-parent

in the family’s home (6 percent). Although it may be of some substantive interest to separate out

these different home-based settings, it was not feasible given the small sample sizes.

Table 2 shows the distribution of observed child care settings in the Head Start year for children

in the HSIS treatment and control groups. Among treatment group children, 77 percent took up

the offered slot and enrolled in Head Start in the treatment year. Approximately eight percent of

children assigned to treatment enrolled in a non-Head Start center, and nine percent were cared for

by a parent or other relative or enrolled in a home-based childcare program. In principle, children

randomized to the control group were free to take up any available early childhood program except

for that provided by the Head Start center to which they had applied and had not been offered

enrollment. In practice, among control group children with an observed care setting, 13 percent

enrolled in a Head Start center (most in the center in which they had lost the lottery), 31 percent

enrolled in a non-Head Start center, and 56 percent were cared for by a parent, a relative, or

within a home-based childcare program. Note that the HSIS sample consists entirely of families

who actively sought to enroll a child in Head Start. Thus, there was at least some initial indication

of a preference for Head Start.

4 Analytic Framework

We next outline the technical aspects of our Bayesian principal stratification framework. We begin

with a general setup for the problem, review the case with binary treatment compliance—that

is, Head Start vs. not Head Start—and then extend this setup to the more general multi-valued

treatment setting. Additional technical details are deferred to Appendix A.

3Family risk in HSIS is based on the sum of five variables: “(1) whether the household received food stamps or
TANF in Fall 2002; (2) if neither parent was a high school graduate; (3) if neither parent is working; (4) if the mother
was a teen mother; (5) and if the mother is a single mother” (Puma et al., 2010b).
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4.1 Overview of Bayesian principal stratification

Following Neyman (1990) and Rubin (1974), we set up our problem using the potential outcomes

notation. Thus, the causal effects of interest are defined regardless of the mode of inference. With

this setup, we explore two common inferential approaches: moment-based and model-based. In

the moment-based approach, the idea is to equate the causal quantities of interest with population

moments, and then introduce identifying assumptions to create valid moment estimators. In this

setting, a parameter is said to be point-identified if the moment equations and identifying assump-

tions yield a single estimate (see Zhang and Rubin, 2003, for relevant discussion). In the Bayesian

model-based approach, by contrast, unobserved potential outcomes are treated as unknown param-

eters to be estimated given the model and the observed data. Importantly, identification issues

are quite different from this perspective. In a Bayesian setting, proper prior distributions always

yield proper posterior distributions. Thus, lack of identification results in regions of flatness of

the posterior (Imbens and Rubin, 1997a), and identifying assumptions are not strictly necessary.

Rather, introducing these assumptions sharpens the resulting inference.

Our primary approach in this paper is the parametric Bayesian paradigm, which has become

widespread for principal stratification analysis (e.g., Hirano et al., 2000; Mattei et al., 2013). First,

the Bayesian approach is attractive for causal inference with potential outcomes, which is essen-

tially a missing data problem. Second, as Imbens and Rubin (1997b) discuss, parsimoniously

parameterized models can often lead to better practical performance (in the sense of lower root-

mean-squared-error) than corresponding moment-based approaches. Finally, we face a range of

real-world complications in the HSIS example: missing data and study attrition; stratified ran-

domization across many, small Head Start centers; and a mix of child- and center-level covariates.

Addressing these issues is natural in a full Bayesian model but would be quite difficult with moment-

based approaches.

At the same time, we still find it useful to articulate the assumptions necessary for a moment-

based analysis. First, while hierarchical Bayesian modeling is a powerful inferential tool, it is often

difficult to determine what “drives” such models in practice. Indeed, Cox and Donnelly (2011, p.

96) warn that “if an issue can be addressed nonparametrically then it will often be better to tackle

it parametrically; however, if it cannot be resolved nonparametrically then it is usually dangerous

to resolve it parametrically.” We therefore believe it is useful to assess the level of danger we face.

By thinking through the nonparametric approach, we show that the danger in our model is largely

due to dependence on the Normality assumption.

4.2 Setup and ITT

We observe N children, N1 of whom are randomized to receive the opportunity to enroll in Head

Start, with treatment indicator Zi = 1 for child i, and N0 of whom are not, with Zi = 0. We analyze

the HSIS data as a stratified randomized evaluation, with child-level randomization conducted

separately within each Head Start center.
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In order to use the potential outcomes notation, we first make the standard Stable Unit Treat-

ment Value Assumption (SUTVA; Rubin, 1980), which states that the treatment assignment of one

child does not affect the outcome of another child. Next, we define the relevant potential outcomes.

First, let Dobs
i ∈ D denote the observed care setting for child i, where D is the set of possible care

settings, and Di(z) is the care setting child i would have received if that child had been assigned to

treatment condition z. Second, let Y obs
i ∈ R denote the observed outcome of interest (e.g., PPVT),

with corresponding potential outcomes, Yi(z). With this setup, Y obs
i = ZiYi(1) + (1−Zi)Yi(0) and

Dobs
i = ZiDi(1) + (1− Zi)Di(0).

We now formalize the assumption that randomization is valid, which is sensible given that HSIS

is a randomized experiment: (Imbens and Rubin, 2015):

Assumption R. (Random assignment.) Treatment assignment probabilities do not depend on

the potential outcomes:

Zi ⊥⊥ (Yi(0), Yi(1), Di(0), Di(1)) .

Finally, we define the Intent-to-Treat (ITT) estimand as

ITT =
1

N

∑
Yi(1)− Yi(0).

Under assumption R, we can estimate the ITT with the usual difference-in-means estimator. We

note that our estimands of interest are defined for the finite sample of N children observed in

HSIS, which is straightforward to estimate in the Bayesian paradigm (see Imbens and Rubin,

2015, for further discussion). However, since we also present moment-based results, we present all

assumptions in terms of a super-population for convenience.

4.3 IV: D∗i ∈ {Head Start,Not Head Start}

To introduce the overall approach, we briefly walk through the assumptions necessary to identify

the Local Average Treatment Effect, following Angrist et al. (1996). Let D∗i be a binary indicator

for whether or not child i participated in Head Start in the first year. Define child i’s compliance

type, S∗i , via the joint values (D∗i (0), D∗i (1)), as shown in Table 3a. For continuity with the next

section, we refer to these compliance types by the more general term, principal strata, taking values

S∗i ∈ {Always Head Start, Never Head Start, Complier, Defier}. As usual, we define the LATE as

the impact of randomization on the Compliers:

LATE =
1

Nc

∑
i: S∗

i =c

Yi(1)− Yi(0).

The two standard assumptions for IV are: (1) the “no defiers” assumption; and (2) the exclusion

restrictions for Always Head Start and Never Head Start children.

Assumption IV-1. (IV Monotonicity/No Defiers.) There are no individuals with {D∗i (0) =

1, D∗i (1) = 0}.
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The monotonicity assumption states that there are no children who would enroll in Head Start when

denied access to the program but who would not enroll when explicitly offered a position. While

such behavior is possible in other settings, it is unlikely in the context of HSIS, where enrolling in

Head Start without an available position is already quite difficult.

Assumption IV-2. (IV Exclusion Restrictions.) For S∗i ∈ {Always Head Start,Never Head Start},
Yi(0) = Yi(1).

The exclusion restriction for Never Head Start children states that there is no effect of randomization

on those children who would never enroll. While this is not always a plausible assumption (e.g.,

Jo and Stuart, 2009), in the context of Head Start, there is no reason to expect that turning down

the offer of enrollment will have any effect on test scores. The exclusion restriction for Always

Head Start children states that there is no effect of randomization on those children who would

enroll in Head Start regardless of random assignment. As Gibbs et al. (2011) argue, this exclusion

restriction might not hold in practice. In particular, roughly half of Always Head Start children

enroll in Head Start centers other than the center of random assignment. If these alternative centers

systematically differ from centers of random assignment, then the exclusion restriction might not

hold for this group.

From a moment-based perspective, Assumptions IV-1 and IV-2 are necessary to identify the

LATE, as we discuss in Section 6.2 (Angrist et al., 1996). From a Bayesian model-based perspective,

these assumptions are not strictly necessary for inference. Therefore, it is possible to assess these

assumptions by relaxing them in the model (e.g., Imbens and Rubin, 1997a; Hirano et al., 2000;

Mattei et al., 2013). As these questions are not central to our main substantive point, however, we

do not explore them further here.

4.4 Principal Stratification: Di ∈ {Head Start,Other Center,Home}

The IV approach allows us to estimate the impact of Head Start among Compliers. However,

we wish to estimate differential impacts for children within this group. Our inferential goal is

to divide the overall LATE into one LATE for those who would otherwise receive care in an-

other non-Head Start center and a second LATE for those who would otherwise receive care

in a home-based setting. To do so, we disaggregate the binary indicator, D∗i , to three levels:

Di ∈ {Head Start,Other Center,Home}. We also disaggregate the set of three standard compli-

ance types, S∗, into a more complete set of principal strata, S. Table 3b shows the nine possible

combinations of care types under both treatment and control. Column headings correspond to

the type of care each child would experience if assigned to the control condition; row headings

correspond to the type of care each would experience if assigned to the treatment condition.

As in the standard IV case, we make two key types of assumptions: monotonicity assumptions

and exclusion restrictions. The standard monotonicity assumption from the IV setting becomes a

statement about four strata rather than just one. We break this statement into two parts.
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Assumption PS-1a. (PS Monotonicity/No Defiers.) There are no individuals with {Di(0) =

HS, Di(1) = Center} or {Di(0) = HS, Di(1) = Home}.

Assumption PS-1a states that there are no children who would take up Head Start under assignment

to control but not under assignment to treatment. Therefore, strata A and C in Table 3b do not

exist. This is a natural extension of Assumption IV-1 to multi-valued D. As with Defiers in the

IV setup, these two types of Defiers are unlikely to exist in HSIS.

Assumption PS-1b. (Irrelevant Alternatives.) There are no individuals with {Di(0) = Center, Di(1) =

Home} or {Di(0) = Home, Di(1) = Center}.

Assumption PS-1b states that the Head Start offer does not change the care setting for families

choosing between non-Head Start options. Therefore, strata B and D in Table 3b do not exist. Wal-

ters (2015) motivates this assumption with a revealed preference argument: since the availability of

non-Head Start preschool is not affected by a Head Start offer, preferences among non-Head Start

care options should not be affected either. While this is an unverifiable assumption, it is likely that,

if such families do exist, they make up only a very small fraction of the overall population.

This yields five possible principal strata: Always Head Start (ahs), Always Center (ac), Always

Home (ah), Center Complier (cc), and Home Complier (hc). As in the IV case, we can naturally

make exclusion restrictions for principal strata unaffected by randomization. In particular we

assume zero treatment effect for the Always Head Start, Always Center, and Always Home strata.

Assumption PS-2. (PS Exclusion Restrictions.) For Si ∈ {Always Head Start, Always Center,

Always Home}, Yi(0) = Yi(1).

The exclusion restriction for Always Head Start children here is identical to the exclusion restriction

for Always Head Start children in the IV case. The exclusion restriction for Never Head Start

children in the IV case directly implies the exclusion restrictions for Always Center and Always

Home children here.

The remaining strata are Center Compliers and Home Compliers. Our goal is to estimate the

impacts of randomization for these groups, which are the effects of receiving Head Start versus

receiving other center-based care and home-based care, respectively:

LATEcc =
1

Ncc

∑
i: Si=cc

Yi(1)− Yi(0)

LATEhc =
1

Nhc

∑
i: Si=hc

Yi(1)− Yi(0).

As with the overall LATE, these are local effects since they are only defined for specific subgroups.

In other words, we cannot interpret the difference between LATEcc and LATEhc as the causal

effect of other center-based care versus home care—these two subgroups are not the same children.

They differ across a range of unobserved and observed characteristics, such as child pre-test scores

and family characteristics.
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Finally, the overall LATE is a weighted average of these two estimands:

LATE =
πcc

πcc + πhc
LATEcc +

πhc

πcc + πhc
LATEhc

where πs denotes the proportion of children in stratum s.

5 Describing Principal Strata

In most subgroup analyses, the groups themselves are known and fixed. For example, we can easily

estimate the differential impact of Head Start for boys and girls: after collecting baseline data, each

child’s gender is known. While principal strata are well-defined subgroups, just like three and four

year olds, we cannot directly observe subgroup membership for all children.

Fortunately, we can extend some results from the IV case to provide useful descriptions of the

principal strata themselves. In particular, we can non-parametrically identify the overall distri-

bution of principal strata as well as the distribution of covariates within each stratum. We could

therefore use moment-based methods to estimate these distributions. However, as discussed in

Section 4.1, we instead use a Bayesian model-based approach, which allows us to address impor-

tant study complications. Unsurprisingly, we find that these principal strata indeed differ across

observed characteristics and that this variation is consistent with intuition and results in the early

childhood literature.

The Appendix gives further details for the results we present below along with proofs of all the

lemmas.

5.1 Overall Distribution of Principal Strata

Extending the standard results from the IV case (Angrist et al., 1996), we can estimate the overall

size of each principal stratum.

Lemma 1 (Distribution of Principal Strata). Under Assumptions R, PS-1a, and PS-1b, the dis-

tribution of principal strata, πs ≡ P{Si = s}, is non-parametrically identified for all s.

For intuition on Lemma 1, it is useful to see the analogue in the IV setting: we first estimate the

proportion of Always Head Start children in the control group and Never Head Start children in the

treatment group, and then subtract to estimate the proportion of Compliers. Table 4 shows point

estimates for the distribution of principal strata in the sample. Roughly one-third of all children

are non-compliers of various types; each non-complier stratum is around 10 percent of the overall

sample. The remaining two-thirds are split between the two Complier groups; Home Compliers

total around 70 percent of all Compliers.
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5.2 Using Covariates to Predict Stratum Membership

Since HSIS is a randomized experiment, we can examine the distribution of principal strata for

specific subgroups, such as for all boys in the sample. Following Hill et al. (2002), we define the

principal score as πs|x ≡ P(Si = s | Xi = x), the probability that a child belongs to principal

stratum s given that child’s observed covariates (see also Abadie, 2003; Jo and Stuart, 2009). Note

that this is a simple generalization of modeling the “first stage” in the standard IV setting as a

function of the covariates (e.g., Angrist, 2004).4

For HSIS, we estimate the principal score using multinomial logistic regression and a simple

data augmentation procedure.5 Figure 1 shows the resulting logistic regression coefficients for select

covariates that are predictive of being a Center-based vs. Home-based Complier. We discuss these

results below.

5.3 Distribution of Covariates by Principal Stratum

We can also estimate the distribution of covariates for each principal stratum.

Lemma 2 (Distribution of Covariates by Principal Stratum). Under Assumptions R, PS-1a,

and PS-1b, P{Xi = x | Si = s} is non-parametrically identified for all s.

This lemma is a simple extension of the comparable IV result in Abadie (2003), and allows us

to make concrete observations about otherwise unobservable groups (see also Angrist and Pischke,

2008; Frumento et al., 2012). Table 6 shows the means for select covariates for each stratum; Fig-

ure 2 separately shows the means for pre-test score by principal stratum. There are key differences

in observable characteristics across the latent groups. Columns 1–3 on Table 6 show variation in

pre-treatment covariates across the different types of non-compliers. Overall, these results suggest

that children who always enroll in a non-Head Start center-based setting outperform their coun-

terparts who would always be in Head Start or in a home-based setting. For example, as shown in

Figure 2, Always Center-based children strongly outperform Always Head Start and Always Home-

based children on the PPVT pre-test. Other covariates also sensibly predict differences among the

non-complier types. For example, Always Center children are much more likely to live in a state

that has state-funded preschool than Always Home children. In general, this ordering is consistent

with the selection results from Deming (2009), who finds that families of children in non-Head Start

preschools have higher income and maternal education than families of children in Head Start or

in no preschool.

4Unlike the usual first stage model, P{D∗,obs | Xi = x}, the principal score is vector-valued, since Si is discrete
rather than binary.

5This approach improves on simpler versions of this model fit by Walters (2015) and Zhai et al. (2014). Walters
(2015) effectively estimates the share of Center-based Compliers and Home-based Compliers for each Head Start
center, doing so via two separate logistic regressions, rather than via multinomial logistic regression. Zhai et al.
(2014) estimate a multinomial logistic regression using covariates to predict D(0) rather than stratum membership,
therefore conflating Always Center-based children and Center Compliers under control and conflating Always Home-
based children and Home Compliers under control.
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We can compare our two complier groups by examining columns 4 and 5 of Table 6, which are

the complement to the logistic regression coefficients in Figure 1. Consistent with research that has

found that parents typically prefer center-based care for four-year olds (e.g., Huston et al., 2002;

Rose and Elicker, 2010), roughly 60 percent of Home Compliers are three years old, compared to

only 45 percent of Center Compliers. We also find that Home Compliers enter the study with

lower pre-academic skills. Home Compliers exhibit lower PPVT performance at the beginning of

the study and are more likely to be in the bottom third of PPVT performance compared to Center

Compliers. Home Compliers are additionally more likely to have a mother with less than a high

school education. As above, Center Compliers are more likely to live in states that, during the

time of the HSIS, provided state-funded pre-kindergarten. Note that we do not find meaningful

differences between these two groups based on race or ethnicity or based on Dual Language Learner

status.

Overall, these differences in covariate means by principal stratum underscore that children in

different principal strata do, indeed, differ in terms of their baseline characteristics. Therefore, while

estimates of causal effects within each principal stratum are valid, comparisons between principal

strata are descriptive rather than causal, in the same way that comparing treatment effects for

males and females is descriptive rather than causal. In other words, differential impacts across

strata could also be due to differences in observed or unobserved characteristics other than care

type. See Gallop et al. (2009) for a discussion of using principal stratification for mediation analysis,

which generally requires much stronger assumptions than those presented here.

6 Overview of Identification and Estimation

This section provides an overview of the identification and estimation strategies used in this paper.

Interested readers can find greater detail in the Appendix, which gives an in-depth discussion of

possible identification approaches, our hierarchical Bayesian estimation procedure, robustness to

different parametric assumptions, and other technical information. Conversely, readers can skip to

Section 7 for a discussion of the results.

6.1 Identification

The identification strategy rests on the idea that we can identify the outcome distributions for

each principal stratum. This builds on earlier work in the IV case from Imbens and Rubin (1997b)

and Abadie (2003). We provide a brief sketch of the idea here. The Appendix provides additional

discussion of identification in principal stratification models (see also Zhang et al., 2009).

To illustrate the identification approach, first consider a standard subgroup analysis, for exam-

ple, estimating the impact of Head Start for the subgroup of boys. Formally, we can achieve this in

two distinct steps. The first step is to identify the distribution of outcomes for boys in the treat-

ment group, which we denote gboys 1(y), and the corresponding distribution of outcomes for boys in

the control group, which we denote gboys 0(y). Since HSIS is a randomized experiment, and since
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we directly observe which children are boys, we can non-parametrically identify both gboys 0(y) and

gboys 1(y) from the corresponding sample (e.g., via kernel density estimation). We can then obtain

the average impact of Head Start on boys by comparing the means of the two distributions. While

not necessarily practical, this is nonetheless a valid procedure for identifying an average treatment

effect for a subgroup.

6.1.1 Instrumental Variables

While we directly observe gender, we do not directly observe compliance type for all children. We

therefore must adopt a different approach for estimating the outcome distributions by compliance

type. For illustration, we again begin with the standard IV set up for non-compliance, where we

compare Head Start versus not Head Start:

• Always Head Start and Never Head Start. Under monotonicity, we know that any

children in the control group who enroll in Head Start must be Always Head Start children.

As a result, we can directly estimate the outcome distribution for the Always Head Start

subgroup under control, gahs 0(y). Since we assume that there is no treatment effect for

this group (i.e., that the exclusion restriction holds for Always Head Start children), then

gahs 1(y) = gahs 0(y) = gahs(y). We can repeat this approach for Never Head Start children in

the treatment group, which yields gnhs 1(y) = gnhs 0(y) = gnhs(y).

• Compliers. We must take a different approach for the Compliers. First, we cannot directly

observe which children are Compliers. Second, since we are interested in the LATE, we can

no longer assume that Compliers have the same outcome distribution under treatment and

control. The key insight is to focus on the relationship between the observed treatment and

the unobserved compliance type; Table 5a shows these relationships for the IV case. For

example, children in the control group who do not enroll in Head Start are either Compliers

or Never Head Start children. In other words, the observed outcome distribution for these

children is a mixture of gnhs(y) and gco 0(y). Formally:

f00(y) =
πnhs

πnhs + πco
gnhs(y) +

πco

πnhs + πco
gco 0(y), (1)

where fzd(y) is the observed outcome distribution for children with treatment assignment Zi =

z and treatment received D∗i = d. For example, f00(y) is the observed outcome distribution

for children assigned to the control condition who do not experience Head Start. Since we can

directly observe f00(y), πnhs, πco, and gnhs(y), we can re-arrange terms to identify gco 0(y), the

outcome distribution for Complier children in the control group. We can repeat this with the

mixture of Always Head Start and Compliers under treatment to obtain gco 1(y). Therefore,

we can non-parametrically identify both gco 0(y) and gco 1(y), even though we cannot observe

these distributions directly. See Imbens and Rubin (1997b) for additional discussion.
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Once we have all the outcome distributions, we can immediately obtain the average outcomes by

principal stratum, µsz, and finally obtain LATE = µco 1 − µco 0. Also see Kling et al. (2007) for

an example in which the Complier means are substantively meaningful in their own right. More

generally, Abadie (2003) shows that we can use this approach to identify a broad range of features

by compliance type, including covariate distributions.

6.1.2 Principal Stratification

We now extend the argument from the IV case to identify the outcome distributions for our principal

strata of interest. We again have observed mixtures, as shown in Table 5b.

• Always Head Start, Always Center-based, and Always Home-based. Just as with

the Always Head Start and Never Head Start groups, we directly observe the outcome dis-

tributions for the Always Head Start, Always Center-based, and Always Home-based strata.

For example, we directly observe the Always Home-based children under treatment and can

therefore non-parametrically identify gah 1(y). Since we assume that there is no impact of

randomization on this group, gah 1(y) = gah 0(y) = gah(y). We repeat this for the Always

Head Start and Always Center-based strata, yielding non-parametric identification for gahs(y),

gac(y), and gah(y).

• Center-based Compliers (control) and Home-based Compliers (control). As in

the IV case, we cannot directly observe the outcome distributions for Center-based Compliers

and Home-based Compliers and must instead identify these distributions indirectly. We begin

with the outcome distribution for Home-based Compliers under control, ghc 0(y). Analogous

to Equation (1), the outcome distribution for control group children in home-based care is a

mixture of gah(y) and ghc 0(y):

f0 Home(y) =
πah

πah + πhc
gah(y) +

πhc

πah + πhc
ghc 0(y). (2)

where we have previously identified gah(y). Similarly, we re-arrange terms to non-parametrically

identify ghc 0(y) and repeat this procedure for the Center-based Compliers under control,

gcc 0(y).

• Center-based Compliers (treated) and Home-based Compliers (treated). Identify-

ing the corresponding Complier distributions under treatment requires additional steps. As

in the IV case, we can reduce the problem to estimating a mixture of two types:

f∗1 HS(y) =
πcc

πcc + πhc
gcc 1(y) +

πhc

πcc + πhc
ghc 1(y). (3)

where f∗1 HS(y) is the observed outcome distribution after “backing out” the Always Head

Start outcome distribution. Unlike the IV case, however, neither mixture component is

17



known, which leads to a two-component finite mixture. Without additional assumptions,

the component densities, gcc 1(y) and ghc 1(y), are not identified.

Therefore, the key inferential challenge, at least implicitly, is estimating the parameters of a two-

component finite mixture. Once we obtain the relevant component means, µcc 1 and µhc 1, we can

then estimate LATEcc = µcc 1 − µcc 0 and LATEhc = µhc 1 − µhc 0.

There are many possible approaches to disentangle the finite mixture model. Since we adopt a

Bayesian parametric framework here, it is natural to assume that the component densities, gcc 1(y)

and ghc 1(y), follow a parametric distribution, namely Normality. In a classic result, Pearson (1894)

showed that the component parameters are all identified under this assumption. Similar results

hold for a broad class of parametric models (Frühwirth-Schnatter, 2006) and for distributions with

shape restrictions, such as symmetry (Bordes et al., 2006; Hunter et al., 2007). Note that, as we

discuss in the next section, our model imposes the Normality assumption on the outcome residuals

(i.e., conditional on covariates) rather than on the marginal outcome distributions.

Finally, it is useful to briefly review some alternative strategies that leverage auxiliary covariates

to disentangle the finite mixture model (Joffe et al., 2007). First, researchers cam assume that that,

conditional on covariates, stratum membership is independent of potential outcomes, an assumption

known as principal ignorability. This can be a sensible assumption in some settings (e.g., Hill

et al., 2002; Schochet and Burghardt, 2007; Scott-Clayton and Minaya, 2014), but seems somewhat

implausible here, as we do not observe critical variables like parental preference for care type prior

to randomization. Second, researchers can restrict the relationship between a special covariate and

the outcome; for example, assuming that the treatment effect does not vary across site (Raudenbush

et al., 2012). While many such restrictions are possible (e.g., Jo, 2002; Ding et al., 2011; Mealli and

Pacini, 2013), there is no clear candidate for such a special covariate in HSIS, nor is it plausible

to assume that the treatment effect is constant across Head Start centers. Finally, see Hall and

Zhou (2003) and Mealli and Pacini (2013) for assumptions when there are multiple, independent

outcomes.

6.2 Estimation

We now turn to model-based estimation. In practice, we could estimate the full parametric model

from either a likelihood or Bayesian perspective. Indeed, some prominent applications of model-

based principal stratification utilize a direct likelihood approach (e.g., Zhang et al., 2009; Frumento

et al., 2012). This approach is quite flexible and allows for straightforward comparisons between

different models. It is especially attractive when specifying prior distributions is not desirable. An

important feature of the Head Start data, however, is the multilevel structure of children nested

within Head Start centers. Incorporating this structure is immediate with a Bayesian approach

but can prove quite complex in a likelihood setting. In addition, accounting for uncertainty in the

parameter estimates is natural with a Bayesian approach but can be more involved with a direct

likelihood approach (see, for example, Frumento et al., 2016). While we use a Bayesian estimation

approach, we would expect quite similar results using either method.
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6.2.1 Sketch of Data Augmentation

To develop intuition, we first give a high-level sketch of a data augmentation procedure for esti-

mating the parameters of interest. To focus on the core estimation problem, we initially ignore

important complications, returning to them below. The key idea is to alternate between (1) es-

timate the vector of model parameters, θ, given stratum membership, S, and (2) imputing each

child’s principal stratum membership, S, given θ. Beginning with an initial guess of principal

stratum membership for each child:

• Step 1: Given stratum membership, estimate model parameters. We estimate

model parameters via two sub-models.

– Step 1A: Outcome sub-model, gsz|x(y). First, we estimate the regression of Y obs on X

and Z within each principal stratum, S. The critical assumption is that the residuals

follow a Normal distribution.

– Step 1B: Principal score sub-model, πs|x. Second, we estimate a multinomial logistic

regression predicting S given X.

• Step 2: Given model parameters, predict stratum membership. Given the outcome

sub-model, gsz|x(y), and principal score sub-model, πs|x, we can estimate the probability of

stratum membership via Bayes’ Rule. For example, if we observe a child in the control group

who is in home-based care, the child’s probability of being a Home Complier is:

P{Si = hc | data, θ} =
πhc|x · ghc 0|x(y)

πhc|x · ghc 0|x(y) + πah|x · gah|x(y)
.

We then flip a weighted coin to predict Si for that child. By contrast, if we observe a child in

the treatment group who is in home-based care, the child must be in the Always Home-based

stratum. So P{Si = ah | data, θ} = 1.

6.2.2 Model details

The actual model is considerably more complex. We highlight key issues here and defer additional

technical details to the appendix. First, the outcome models by principal stratum are:

yobs
i | (Si = ahs, θ,xi, zi) ∼ N

(
αahs + βahsxi + ψj[i], σ

2
ahs

)
yobs
i | (Si = ac, θ,xi, zi) ∼ N

(
αac + βacxi + ψj[i], σ

2
ac

)
yobs
i | (Si = ah, θ,xi, zi) ∼ N

(
αah + βahxi + ψj[i], σ

2
ah

)
yobs
i | (Si = cc, θ,xi, zi) ∼ N

(
αcc + βccxi + ψj[i] + τcczi + ωj[i],cczi, σ

2
cc,z

)
yobs
i | (Si = hc, θ,xi, zi) ∼ N

(
αhc + βhcxi + ψj[i] + τhczi + ωj[i],hczi, σ

2
hc,z

)
,

where j[i] denotes the site j corresponding to child i. Within each stratum, this is essentially a

varying intercept/varying slope model. To improve the stability of the model, the variance terms
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for the two complier groups under treatment are constrained to be equal, σ2
cc 1 = σ2

hc 1.6 Given

small sample sizes within each site, the random effects for site, {ψj}, are constrained to be equal

across principal strata, although the treatment effects are allowed to differ. The site-level estimates

follow a multivariate Normal distribution: ψj

ωj,cc

ωj,hc

 ∼ N


γ

ctrwj

0

0

 ,Σy



where wj is a vector of site-level covariates and Σy is an unconstrained covariance matrix. We

include the proportion assigned to treatment, z̄j , as a site-level predictor in order to account for

differing proportions randomized to treatment by site (see Bafumi and Gelman, 2006; Raudenbush,

2015).

We also introduce a multilevel structure in the multinomial logistic regression model:

P(Si = s | θ,xi) =
exp(γs,j[i] + δ′sxi)∑K
s=1 exp(γs,j[i] + δ′sxi)

γs,j ∼ N (µγ,s + δctrs wj , η
2
γ,s)

where the site-level random effects are independent across strata. See the appendix for additional

details.

Three additional points are worth noting. First, as discussed in Section 3.2, there is considerable

missingness in HSIS, especially in the outcomes. We address this by assuming that outcomes are

Missing at Random (MAR) (Rubin, 1976),

P{Mi | Yi,Xi, Zi, D
obs
i } = P{Mi | Xi, Zi, D

obs
i },

where Mi is an indicator for missing outcome. In other words, given covariates, treatment assign-

ment, and observed child care setting, missing outcomes are just as likely to be low test scores

as high test scores. While we address alternative assumptions in the appendix, MAR is at least

plausible for HSIS, since the data collection procedures depended heavily on the child’s actual care

setting. Although implicit, this is also the assumption behind the nonresponse adjustment in the

official HSIS report (Puma et al., 2010a).

Second, as we discuss in Section 7.3, the treatment effect varies across observed covariates. Given

the complexity of the base model, however, we report these treatment-by-covariate interactions one

at a time. Since including multiple treatment-by-covariate interactions unsurprisingly yields poor

6Relaxing the constraint that σ2
cc 1 = σ2

hc 1 gives comparable results but leads to worse model fit, since identification
for these variance terms is rather weak. Alternatively, Imbens and Rubin (1997a) suggest modeling the variance based
on treatment received rather than treatment assigned, which would lead to σ2

cc 1 = σ2
hc 1 = σ2

ahs in this context. While
this is a stronger assumption than the equal variance case above, invoking this assumption reduces the number of
unknown parameters in the mixture model by one. See also Griffin et al. (2008).
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model convergence, the main results are from a model that excludes such interactions. Finally, we

use standard reference priors throughout. See the appendix for additional details.

6.2.3 Computational details

While this data augmentation procedure helps to build intuition for estimation, convergence of the

algorithm can be slow in practice. Instead, we estimate this model via Stan, a Bayesian program-

ming language that implements a variant of Hamiltonian Monte Carlo (HMC; Stan Development

Team, 2014; Hoffman and Gelman, 2014). Unlike, say, a classic Gibbs sampler, HMC-based sam-

plers explore the space of the (log) posterior far more efficiently than more standard Markov chain

Monte Carlo approaches, dramatically increasing the effective sample size of the same number of

draws (Hoffman and Gelman, 2014). One drawback of the HMC approach is that the log-posterior

must have globally smooth gradients. As a result, Stan/HMC cannot incorporate discrete latent

parameters, such as indicators for principal stratum membership that would be standard in a data

augmentation scheme. Stan sidesteps this issue by maximizing the observed data log-posterior

rather than the complete data log-posterior. While it is possible to couple a data augmentation

Gibbs step with a bespoke HMC sampler, doing so would lose many of Stan’s key advantages,

including optimized C++ code and a powerful, flexible programming language. In the end, it is

unlikely that this project would have been feasible without the development of Stan.

Each model was run with five separate chains with 500 “warm up” draws and 500 posterior

draws. We assess model convergence in the usual way via traceplots, via Gelman-Rubin R̂ statistics

at or near 1, and via measures of the effective sample size from each chain. All models reported

here showed excellent convergence for parameters of interest. As with all hierarchical models, some

hyperparameters were poorly estimated; we do not report those.

7 Results

We now summarize results for the Intent-to-Treat, Instrumental Variable, and Principal Stratifica-

tion models, beginning with impacts in the Head Start year. We then briefly explore impacts after

the first year as well as additional impact heterogeneity, including distributional treatment effects.

Finally, we report sensitivity and robustness checks.

7.1 Impacts in the Head Start Year

The first row of Table 7 shows the ITT estimate, the impact of opportunity to enroll in Head Start,

on PPVT in effect size units (i.e., effects scaled by the SD of the control group). Consistent with the

original Head Start results (Puma et al., 2010a), we find that the overall impact of randomization

to treatment is +0.14 in the Head Start year (posterior median). There is strong evidence that this

impact is greater than zero.

In general, the results we present here give much stronger statistical evidence that the impacts

are positive than the evidence presented in Puma et al. (2010a). Multiple factors contribute to
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these differences. First, unlike Puma et al. (2010a), we pool the three- and four-year-old cohorts,

which roughly doubles the sample size. Second, unlike Puma et al. (2010a), we control for Head

Start center of random assignment in the outcome model, which improves precision. Finally, we do

not use the HSIS weights, which were created to generalize the experimental results to a particular

population of Head Start children. As we estimate impacts for the finite sample of children in

HSIS, the corresponding standard errors are smaller. See Bloom and Weiland (2014) for additional

discussion.

The second row of Table 7 shows the corresponding LATE estimate from the IV model. Among

Compliers, the impact of enrolling in Head Start on PPVT is +0.18. This estimate is nearly identical

to that of Bloom and Weiland (2014), who conduct a similar analysis. As with the ITT, there is

strong evidence that this impact is positive.7 This effect is comparable to the average effects of early

childhood education programs reported in a recent meta-analysis (effect size of +0.21; Duncan and

Magnuson, 2013) and represents approximately one-quarter of the Black-White test score gap at

the end of kindergarten (Fryer and Levitt, 2004).

The last three rows of Table 7 show the principal stratification results from the full model.

For Home Compliers, we find a treatment effect of +0.23 on PPVT, with strong evidence that

these impacts are greater than zero. This is much larger than the ITT effect. For Center Com-

pliers, however, we find an effect of zero. Because we jointly estimate LATEhc and LATEcc, we

can calculate that P{LATEhc > LATEcc} = 0.99. As we discussed above, this is a descriptive

comparison—like claiming that the treatment effect is larger for boys than girls—but it nonetheless

shows that impacts for these two latent groups are meaningfully different.

A useful check is to compare the implied LATE and ITT estimates from the principal strat-

ification model with the corresponding estimates from the IV and ITT models, respectively. In

particular, the implied LATE is +0.16, which is quite close to the IV model estimate of +0.18; the

implied ITT is +0.11, again close to the ITT model estimate of +0.14. This similarity is reassuring

given the additional flexibility and complexity of the principal stratification model.

Another useful check is to compare our results to those of Kline and Walters (2015), who use

a structural model to estimate a range of different treatment effects for the HSIS data, including

LATEhc and LATEcc. Identification in the Kline and Walters (2015) paper comes from two main

sources: (1) assuming that the choice of a child’s care setting follows a multinomial Probit discrete

choice model (i.e., that the latent choice utilities follow a multivariate Normal distribution), and

(2) assuming that there is no interaction between covariates and Z. First, our multinomial logistic

regression model is analogous to their multinomial Probit model, although our modeling choice is

not critical for identification. Second, our assumption of Normality on the residuals broadly takes

the place of their assumption of no interaction between covariates and Z: both place restrictions

on the heterogeneity of the outcome distributions. Thus, while our approaches are quite different

in formulation (see Mealli and Pacini, 2008, for a comparison of selection models and principal

7Note that this estimate differs from the usual Wald estimator for IV, ITT
πc

= 0.14
0.7

= 0.20. This is primarily due
to the multi-site randomization and differences in compliance rates across Head Start centers. See Raudenbush et al.
(2012) and Reardon and Raudenbush (2013) for further discussion of this issue.
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stratification), the underlying assumptions are similar in spirit. It is therefore reassuring that Kline

and Walters (2015) also find the same overall pattern of effects, with positive and significant impacts

for Home Compliers and negligible impacts for Center Compliers. While their point estimate for

LATEhc is somewhat larger than ours (0.35 vs. 0.23), it appears as though this discrepancy is

largely due to a different choice of outcome; Kline and Walters (2015) estimate impacts on an

index of outcomes while we focus on PPVT alone.8

7.2 Impacts after the Head Start Year

A key feature of the HSIS design is that children in the three-year-old cohort control group were

given access to the Head Start program in the second year of the study. In practice, nearly half

of the control group took up the opportunity to enroll, with another 34 percent enrolling in other,

non-Head Start center care during that year. Enrollment was similarly high for treatment group

children: 64 percent enrolled in Head Start, with another 24 percent enrolling in other center

care.9 Therefore, by the second year of HSIS, the randomization only increased the probability of

enrolling in Head Start by 16 percentage points and only increased the probability of enrolling in

any center-based care setting by 6 percentage points.

There are several possible approaches to address this complication. First, we could expand the

number of principal strata to allow for two years of enrollment in Head Start. However, this is

impractical given the complexity of just modeling care setting in the first year. Another possibility

is to re-define care setting to be D ∈ {Ever in Head Start,Home-based care,Center-based care}.
See, for example, Kline and Walters (2015). Consistent with the official report (Puma et al.,

2010a), we focus on the setting in which the child was cared for in the first year of the intervention,

even for outcomes collected in subsequent years. We believe that this is a sensible definition, as the

randomization encourages participation in Head Start in the first year only. Nonetheless, simply

pooling cohorts after the Head Start year does not yield easily interpretable results.

Following Puma et al. (2010a), we therefore analyze the results separately by cohort to assess

impacts after the Head Start year. Unfortunately, further dividing Center and Home Compliers

into separate three- and four-year-old subgroups makes estimation more challenging. Sample sizes

are relatively small. In addition, outcome missingness increases substantially over the course of the

study, with roughly a quarter of all outcomes missing by the third year. Therefore, the cohort and

subgroup results presented below should all be considered exploratory.

With this caveat in mind, Figure 3 shows the treatment effect on PPVT by cohort by assessment

year for all Compliers, for Center Compliers, and Home Compliers.10 Consistent with the official

8We can assess the influence of the outcome choice with a simple back-of-the-envelope calculation. Their estimate
of the overall LATE, which is non-parametrically identified, is roughly 40 percent larger than ours (0.25 vs. 0.18);
their estimate of LATEhc is roughly 50 percent larger than ours (0.35 vs. 0.23).

9For the three year old cohort, 22 percent of control group children and 14 percent of treatment group children
do not have an observed care setting in the second year of the study. Reported percentages are among children with
observed care type.

10These are the normative grades for a given cohort. Children who began the study as three-year-olds were able
to gain access to Head Start in year 2 and then enrolled in kindergarten in year 3. The four-year-olds transitioned
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HSIS results, we find a decline in the treatment effect as children age. Nonetheless, unlike in the

official HSIS results, we find impacts that are positive and meaningfully different from zero by the

time children are in 1st grade, with LATE estimates of 0.09 and 0.14 for the three- and four-year-

old cohorts, respectively. The effects for Home Compliers follow the same decline as for the overall

Compliers, albeit with slightly larger point estimates and with less precision. By contrast, the

impacts among Center Compliers are best described as noise around zero, though this null result

could be due to the limited sample size. Note that the pooled main effects in Table 7 are the

(weighted) average of the impacts on three-year-olds at age 3 and four-year-olds at age 4.

While we regard these results as exploratory, they nonetheless suggest that the impact of Head

Start might indeed persist into early elementary school, even if the magnitudes are modest. In

particular, Gibbs et al. (2011) argue that a key puzzle of the HSIS results is not that they decrease

over time, but that they attenuate to zero as soon as children leave the program, much more rapidly

than estimates based on quasi-experimental methods (e.g., Currie and Thomas, 1993; Deming,

2009). The results in Figure 3 show that the decline in treatment effects may not be nearly as

rapid as in the reported topline results.

7.3 Subgroup and Quantile Treatment Effects

Several recent papers have explored variation in Head Start’s impact across observed subgroups

and across quantiles of the outcome distribution. Since Center and Home Compliers differ across

a range of observed and unobserved characteristics, an important question is therefore the extent

to which these differences explain the different impacts for the two Complier groups. Again, these

estimates should be considered exploratory.

First, we turn to variation across subgroups defined by pre-treatment characteristics. Follow-

ing Bloom and Weiland (2014) and Bitler et al. (2014), we focus on variation by (1) whether a

child is in the bottom third of pre-test score by cohort; and (2) whether a child is a Dual-Language

Learner (DLL). Table 8 shows the corresponding principal stratification estimates during the Head

Start year. First, across all four subgroups, we observe the same pattern of positive, significant

effects for Home Compliers and negligible effects for Center Compliers. While the smaller sample

sizes limit statistical power, this consistency nonetheless bolsters the overall findings. Second, as

in Bloom and Weiland (2014), we find larger Home Complier effects for children in the bottom third

by pre-test score and also for DLL students. The effect for DLL students is especially striking, with

an effect size of around +0.35 SD in the Head Start year, more than double the point estimate

for non-DLL students. This suggests that, at least in terms of vocabulary development, there is

substantial impact of Head Start relative to a home-based setting in which English is likely not

spoken. See Bloom and Weiland (2014) for additional discussion.

Another likely source of impact variation is heterogeneity across the outcome distribution (Bitler

et al., 2003). In a recent paper, Bitler et al. (2014) estimate distributional effects for Head Start

to kindergarten and then first grade in the second and third years of the study. Therefore, by year 3, all children, if
following a standard educational trajectory, were in elementary school.
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via quantile treatment effects, G−1
co 1(q) − G−1

co 0(q), the difference between the qth quantiles of the

outcome distributions for Compliers under treatment and control, respectively. The authors find

that the impacts of Head Start on PPVT and other measures are largest at the bottom of the

outcome distribution, both overall and among Compliers. As we discuss in Appendix B, we can

leverage our framework both to replicate and to extend their results. Figure 4 shows the quantile

treatment effect estimates for all Compliers, Center Compliers, and Home Compliers during the

Head Start year. As expected, our estimates for all Compliers are very close to those of Bitler et al.

(2014), showing large, positive effects at the bottom of the distribution of between +0.4 and +0.6

SD. The effects for Home Compliers are also positive and significant throughout, with larger effects

at the bottom of the distribution. By contrast, the quantile treatment effects for Center Compliers

are essentially zero across the entire distribution.

7.4 Sensitivity Checks

We conducted robustness checks for our main results of impacts in the Head Start year, which

we briefly discuss here. First, we assess sensitivity to our handling of missing data and re-fit the

principal stratification model using only observed outcomes, approximately 80 percent of the overall

sample. Table 9 shows the resulting complete case estimates, which are essentially unchanged from

the full version. Second, as we discuss in Section 6, the Normality assumption plays a critical role

in both identification and estimation. Table 9 shows the same model using a heavy-tailed Student

t7 distribution rather than a Gaussian. Again, the results are consistent.

Finally, following Rubin et al. (1984) and Gelman et al. (2013), we use posterior predictive

checks to assess the fit of our full model to the observed data. Formally, let y be the observed data

and θ be the parameter vector. Define yrep as the replicated data that could have been observed if

the study were replicated with the same model and the same value of θ that produced y. We can

estimate the distribution of yrep via the posterior predictive distribution,

p(yrep | y) =

∫
p(yrep | θ)p(θ | y)dθ.

The intuition is to assess whether the replicated data produced from the model are similar to the

observed data. In Appendix B.7, we assess this similarity in two ways. First, we visually inspect

the observed and replicated data sets (see Appendix Figure A2). Second, we compute posterior

predictive p-values following a similar approach in Barnard et al. (2003) and Mattei et al. (2013)

(see Appendix Table A1). Neither approach yields evidence that the model is a poor fit to the

data.

8 Discussion

Our primary contribution is to develop a framework for estimating impact variation by alternative

care setting and to apply this framework to the Head Start Impact Study. In particular, we find
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positive and meaningful impacts on key outcomes among Home-based Compliers, those children

who would enroll in Head Start under treatment and who would otherwise be in home-based care.

By contrast, we find no meaningful effects among Center-based Compliers, those children who

would otherwise receive non-Head Start center care.

In doing so, we present a much more nuanced view of Head Start’s impact than the topline

experimental results indicate. We also refute sweeping generalizations made about Head Start, such

as “Head Start does not improve the school readiness of children from low-income families” (White-

hurst, 2013a). In addition, we do not find any evidence that available center-based alternatives are

more effective than Head Start on average (e.g., Gormley et al., 2010; Barnett and Haskins, 2010).

In the HSIS sample, around half of the control group children who enrolled in some other form

of center-based care did so in either a state-funded prekindergarten program or a prekindergarten

program based in the public schools.11 While statistical power is limited, the null finding for Center

Compliers suggests that concerns over Head Start’s comparative effectiveness may be misplaced.

In addition to showing larger impacts in the Head Start year, we also find that the fade out in

treatment effects over time is gradual, not rapid (Gibbs et al., 2011). This pattern closely resembles

the observed fade out in other early childhood education studies (Magnuson et al., 2007; Leak et al.,

2010). Further, while our estimates are imprecise, we find impacts between 0.10 to 0.15 for Home

Complier children in first grade. These point estimates are very close to those in Deming (2009),

who estimates Head Start impacts of 0.15 for children aged 5 to 6 and 0.13 for children aged 7 to

10.12 Importantly, Deming (2009) observes outcomes for these same children in young adulthood,

showing large long-term impacts. It is therefore possible that future follow up from the Head Start

Impact Study will also find meaningful long-term impacts despite treatment effect fade out on

short-term outcomes.

More generally, our analysis highlights the critical role that variation in counterfactual care

type plays in early childhood education evaluations. Duncan and Magnuson (2013) argue that

improving counterfactual conditions are a primary reason for a sharp decline in reported impacts

of early childhood education interventions over the last half-century. We not only provide evidence

consistent with this claim, but also outline a framework for re-analyzing other early childhood

education studies to create comparable estimates. Of course, the issue of variation in counterfactual

treatments is common in program evaluation settings, including for alternative schools (Bloom and

Unterman, 2014) and job training programs (Heckman et al., 2000; Schochet et al., 2008). Our

approach could easily be extended to these settings as well.

There are several promising avenues for future research. First, at present, we only analyze a

single outcome of HSIS and analyze each follow-up year separately rather than jointly. Recent work

11Like Head Start, these publicly funded programs typically feature minimum standards for important structural
aspects of program quality such as teacher preparation, teacher-child ratio and curricula. This result is also consistent
with a recent study in Tulsa that found that Head Start and a publicly funded prekindergarten program led to
comparable school readiness (Jenkins et al., 2014) and with the larger literature comparing quality for publicly
funded versus private preschool programs (Kagan, 1991; Morris and Helburn, 2000).

12The outcome in Deming (2009) combines PPVT with the Peabody Individual Achievement Tests (PIAT) for
math and reading.
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from Mattei et al. (2013) suggests that looking at multiple outcomes—either across different test

scores or over time—could greatly improve inference for principal causal effects (see also Jo and

Muthén, 2001). In addition, repeated measures of the same outcome would likely make different

assumptions about missingness more plausible (see, for example, Frumento et al., 2012). Second,

while we conduct extensive sensitivity and robustness checks, inference with finite mixture models is

notoriously difficult. In investigations for very simple mixture models, we have found that standard

estimators can behave poorly when mixture components are not well separated (Day, 1969; Feller

et al., 2016). More work is needed to assess whether these same concerns apply to the much

richer models we consider here, although Griffin et al. (2008) have taken an important step in this

direction. Overall, the finite sample properties of these methods are not fully understood, which is

a serious caveat to the findings and approach reported here. That being said, the stability of the

results to sensitivity checks, consistent patterns across subgroups, and alignment with Kline and

Walters (2015) are all encouraging.

In the end, our results support the argument that further efforts to improve the early skill

development of US children through the expansion of publicly-funded preschool programs should

be targeted toward those who are currently not enrolling their children in center-based programs (for

discussion, see Ludwig and Phillips, 2010; Bassok et al., 2013; Cascio and Schanzenbach, 2013).

Nationwide, over 40 percent of eligible children are served by Head Start programs (Schmit et al.,

2013). Although the availability of state and local prekindergarten has grown in recent years, many

low-income children still spend their preschool years in home-based settings. In 2011, approximately

42 percent of three- and four-year-old children from low-income families enrolled in center-based

prekindergarten compared to 59 percent of their non-low income peers (Burgess et al., 2014). Based

on our results, shifting children from home-based care into formal care will likely lead to much larger

effects than shifting children between preschool programs.
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Table 1: Covariate Balance at Baseline

Control Mean T-C Diff. Norm. Diff.

Child Characteristics
PPVT pre-test (std.) 0.03 -0.05 -0.04

Bottom third by pre-test 0.32 0.02 0.03
Three-year old 0.55 — 0.01

Male 0.51 — -0.01
Black 0.30 0.01 0.02

Hispanic 0.37 0.01 0.01
Dual-Language Learner 0.29 0.01 0.03

Special needs 0.11 0.03 0.08

Caregiver and Family Characteristics
Caregiver age: <25 0.32 -0.02 -0.05

Caregiver age: 25-29 0.31 — —
Caregiver age: 30-39 0.29 0.01 0.02

Caregiver age: 40+ 0.07 0.02 0.06
Teen mother 0.19 -0.03 -0.07

High school dropout 0.39 -0.02 -0.04
Only high school diploma/GED 0.33 0.01 0.02

Married 0.45 -0.01 -0.01
Previously married 0.16 — —

Urban 0.84 — —
Family risk: medium/high 0.22 0.03 0.06

Lives with both biological parents 0.49 — —
Recent immigrant 0.19 — 0.01

Any older sibling attended Head Start 0.37 0.04 0.09
Oldest child 0.45 -0.03 -0.06

Head Start Center of Random Assignment Characteristics
Provides transportation 0.63 — —

At least four home visits per year 0.21 — -0.01
Full day child care 0.64 — 0.01

Student-teacher ratio 6.75 -0.02 -0.01
All teachers certified in early childhood 0.41 — —

All teachers have mentors 0.46 — —
Center is always filled 0.48 — —

Number of children randomized 17 — —

Neighborhood and State Characteristics
Percent in poverty 0.25 — —

Percent minority 0.44 — —
Percent unemployed 0.11 — —

Percent commute by car 0.82 — —
Number of crimes per 1000 people 44 0.1 0.01

State has DOE Pre-K 0.64 — 0.01
State per-child spending ($’000) 3.9 — 0.01

State Head Start teacher salary ($’000) 21.8 — 0.01

Notes: Section 3.3 discusses the Normalized Difference. For clarity, 0.00 is denoted by ‘—’.
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Table 2: Child care setting by treatment group

Treatment Control Difference

Head Start 0.77 0.11 0.66
Other center-based care 0.08 0.26 -0.18
Home-based care 0.09 0.47 -0.38
Missing 0.06 0.16 -0.10

Head Start (admin.) 0.81 0.12 0.69

Notes: Child care setting is based on responses from the Spring 2003 parent

reports. “Head Start (admin.)” refers to the administrative records collected as

part of HSIS and is the compliance rate used in Puma et al. (2010a).
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Table 3: Possible principal strata in the Head Start Impact Study

Z = 0

Head Start Not Head Start

Z = 1
Head Start Always Head Start Complier

Not Head Start (Defier) Never Head Start

(a) Binary D∗: Head Start vs. No Head Start.

Z = 0

Head Start Center Care Home Care

Z
=

1

Head Start Always Head Start Center Complier Home Complier

Center Care (A) Always Center Care (B)

Home Care (C) (D) Always Home Care

(b) Multi-valued D: Head Start, Other Center-based care, Home-based care.
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Table 4: Distribution of Principal Strata

Noncompliers Compliers
Always HS Always Center Always Home Center Complier Home Complier

0.11 0.11 0.12 0.20 0.45

Notes: Posterior medians, with missing care type imputed. See Appendix C.2.
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Table 5: Relationship between Observed Care Type and Principal Strata

Z D∗ Possible Principal Strata

1 HS Always Head Start, Complier (treat)

1 Not HS Never Head Start

0 HS Always Head Start

0 Not HS Never Head Start, Complier (control)

(a) Binary D∗: Head Start vs. No Head Start.

Z D Possible Principal Strata

1 HS Always Head Start, Center Complier (treat), Home Complier (treat)

1 Center Always Center

1 Home Always Home

0 HS Always Head Start

0 Center Always Center, Center Complier (control)

0 Home Always Home, Home Complier (control)

(b) Multi-valued D: Head Start, Other Center-based care, Home-based care.
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Table 6: Covariate Means by Principal Stratum

Always Always Always Center Home
Head Start Center Home Complier Complier

Child Characteristics
PPVT pre-test (std.) -0.20 0.24 -0.03 0.12 -0.05

Bottom third by pre-test 0.36 0.28 0.35 0.30 0.35
Three-year old 0.63 0.43 0.53 0.47 0.59

Male 0.54 0.53 0.57 0.48 0.48
Black 0.35 0.40 0.23 0.31 0.30

Hispanic 0.42 0.33 0.39 0.35 0.37
Dual-Language Learner 0.37 0.28 0.27 0.33 0.29

Special needs 0.15 0.17 0.12 0.13 0.11

Caregiver and Family Characteristics
Caregiver age: <25 0.29 0.31 0.38 0.24 0.32

Caregiver age: 25-29 0.29 0.31 0.30 0.35 0.31
Caregiver age: 30-39 0.34 0.28 0.26 0.30 0.29
Caregiver age: 40+ 0.08 0.09 0.07 0.11 0.08

Teen mother 0.16 0.19 0.20 0.15 0.17
High school dropout 0.44 0.27 0.47 0.35 0.38

Only high school diploma/GED 0.28 0.35 0.31 0.30 0.36
Married 0.46 0.42 0.47 0.45 0.44

Previously married 0.14 0.18 0.16 0.17 0.16
Urban 0.90 0.87 0.86 0.86 0.81

Family risk: medium/high 0.27 0.16 0.22 0.24 0.25
Lives with both biological parents 0.51 0.47 0.48 0.48 0.51

Recent immigrant 0.23 0.20 0.18 0.22 0.17
Any older sibling attended Head Start 0.40 0.34 0.38 0.34 0.43

Oldest child 0.43 0.47 0.45 0.50 0.39

Head Start Center of Random Assignment Characteristics
Provides transportation 0.44 0.61 0.60 0.62 0.68

At least four home visits per year 0.15 0.17 0.21 0.18 0.25
Full day child care 0.69 0.75 0.59 0.67 0.61

Student-teacher ratio 6.66 6.89 6.58 7.07 6.64
All teachers certified in early childhood 0.50 0.43 0.41 0.44 0.38

All teachers have mentors 0.38 0.49 0.43 0.46 0.48
Center is always filled 0.50 0.43 0.44 0.48 0.49

Number of children randomized 14 18 15 16 18

Neighborhood and State Characteristics
Percent in poverty 0.27 0.25 0.23 0.27 0.24

Percent minority 0.55 0.49 0.40 0.45 0.40
Percent unemployed 0.12 0.11 0.10 0.11 0.10

Percent commute by car 0.72 0.77 0.82 0.81 0.85
Number of crimes per 1000 people 49 45 42 47 43

State has DOE Pre-K 0.72 0.69 0.59 0.68 0.62
State per-child spending ($’000) 3.4 3.8 3.4 4.1 4.2

State Head Start teacher salary ($’000) 21.1 21.7 21.3 21.9 22.1

Notes: Covariate means based on multiply imputed stratum membership.
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Table 7: Impacts in the Head Start Year

A. ITT Model

ITT
0.14

(0.11, 0.16)

B. IV Model

Overall LATE
0.18

(0.14, 0.23)

C. Principal Stratification Model

LATE for Center Compliers
0.00

(-0.13, 0.14)

LATE for Home Compliers
0.23

(0.15, 0.30)

P{LATEhc > LATEcc} 0.99

Notes: Point estimates are posterior medians, with 2.5 and
97.5 quantiles of posterior distribution in parentheses. 95%
posterior intervals that exclude zero are printed in bold. See
Appendix B for estimation details. All treatment effects, in-
cluding LATEcc and LATEhc, are allowed to vary by Head
Start center of random assignment. Note that all three mod-
els are estimated separately. The estimates from the princi-
pal stratification model imply LATE = 0.16 (0.12, 0.21) and
ITT = 0.11 (0.08, 0.13), which are slightly lower than the
estimates from the separate models.
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Table 8: Impacts in the Head Start Year for Select Subgroups

Center Compliers Home Compliers

Panel A. Bottom Third on Pre-Test

Bottom Third
0.19 0.30

(-0.09, 0.47) (0.16, 0.45)

Not Bottom Third
-0.06 0.21

(-0.24, 0.16) (0.08, 0.31)

Panel B. DLL Status

DLL Students
0.06 0.36

(-0.33, 0.42) (0.23, 0.49)

Non-DLL Students
-0.04 0.15

(-0.20, 0.12) (0.08, 0.23)

Notes: Point estimates are posterior medians, with 2.5 and 97.5 quantiles of
posterior distribution in parentheses. 95% posterior intervals that exclude zero
are printed in bold. Estimates are shown in effect size units, so point estimates
might not average to the pooled estimate due to different outcome standard
deviations. See Appendix B for estimation details. All treatment effects are
allowed to vary by Head Start center of random assignment.
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Table 9: Sensitivity Analysis for Impacts in the Head Start Year

Normal; Complete case Student t7; All observations

LATE for Center Compliers
0.03 0.04

(-0.07, 0.15) (0.08)

LATE for Home Compliers
0.21 0.21

(0.15, 0.27) (0.15, 0.26)

P{LATEhc > LATEcc} 0.98 0.96

Notes: Point estimates are posterior medians, with 2.5 and 97.5 quantiles of posterior distribution in parentheses.
95% posterior intervals that exclude zero are printed in bold. See Appendix B for estimation details. All treatment
effects, including LATEcc and LATEhc, are allowed to vary by Head Start center of random assignment.
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Figure 1: Logistic regression coefficients predicting Center vs. Home Compliers, generated from
a multinomial logistic regression predicting all types. All continuous covariates are standardized.
Point estimates and error bars show posterior medians and 95% credible intervals.
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Figure 3: Impact estimates on PPVT by principal stratum and by three- and four-year-old cohort
for each assessment year. Point estimates and error bars show posterior medians and 95% credible
intervals. Effect sizes are calculated separately for each cohort in each assessment year.
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Figure 4: Quantile treatment estimates on PPVT by principal stratum for the Head Start year,
with approximate 90 percent credible intervals.
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Online Appendix

A Identification for Outcome Distributions

A.1 Instrumental Variables

We begin with the IV case, following Imbens and Rubin (1997b) and Abadie (2003). Formally,

let gsz(y) be the distribution of Yi(z) for principal stratum s. Table 3a shows the possible strata

for binary D∗ under the monotonicity assumption (Assumption IV-1): Always Head Start, Never

Head Start, and Compliers. Under the exclusion restrictions (Assumption IV-2), the following

outcome distributions are equal: gahs 0(y) = gahs 1(y) and gnhs 0(y) = gnhs 1(y). This yields four

possible stratum outcome distributions: gahs(y), gnhs(y), gco 0(y), and gco 1(y). Finally, let fzd(y)

be the distribution of Y obs
i in the subsample defined by Zi = z and D∗,obsi = d. Table 5a shows

the relationship between the observed and latent distributions. We can write these relationships

mathematically:

f11(y) =
πco

πco + πahs
gco 1(y) +

πahs

πco + πahs
gahs(y)

f10(y) = gnhs(y)

f01(y) = gahs(y)

f00(y) =
πco

πco + πnhs
gco 0(y) +

πnhs

πco + πnhs
gnhs(y)

Simply re-arranging terms yields:

gahs(y) = f01(y)

gnhs(y) = f10(y)

gco 0(y) =
πco + πnhs

πco
f00(y)− πnhs

πco
gnhs(y)

gco 1(y) =
πco + πahs

πco
f11(y)− πahs

πco
gahs(y)

Since we can non-parametrically identify πs for all s in {ahs,nhs, co} and fzd(y) for Zi ∈ {0, 1}
and D∗i ∈ {0, 1}, we can therefore non-parametrically identify the relevant gsz(y).

A.2 Principal Strata

We now extend this logic to the full principal stratification problem. Table 3b shows the five

possible principal strata under Assumptions PS-1a and PS-1b. Under the exclusion restrictions

(Assumption PS-2), we have the following equalities: gahs 0(y) = gahs 1(y), gac 0(y) = gac 1(y), and

gah 0(y) = gah 1(y). Table 5b shows the relationship between the observed and latent distributions
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with multi-valued D. We again describe these mathematically:

f1 HS(y) =
πahs

πahs + πcc + πhc
gahs(y) +

πcc

πahs + πcc + πhc
gcc 1(y) +

πhc

πahs + πcc + πhc
ghc 1(y)

f1 Center(y) = gac(y)

f1 Home(y) = gah(y)

f0 HS(y) = gahs(y)

f0 Center(y) =
πac

πac + πcc
gac(y) +

πcc

πac + πcc
gcc 0(y)

f0 Home(y) =
πah

πah + πhc
gah(y) +

πhc

πah + πhc
ghc 0(y)

Re-arranging terms yields five of the seven needed distributions:

gac(y) = f1 Center(y)

gah(y) = f1 Home(y)

gahs(y) = f0 HS(y)

gcc 0(y) =
πac + πcc

πcc
f0 Center(y)− πac

πcc
gac(y)

ghc 0(y) =
πah + πhc

πhc
f0 Home(y)− πah

πhc
gah(y)

Following the same logic as in the IV case, these outcome distributions are non-parametrically iden-

tified. However, we still need the outcome distributions for Compliers under treatment, gcc 1(y) and

ghc 1(y). Since we observe gahs(y) in the control group, we can isolate these outcome distributions

by further “backing out” gahs(y) from the three-component mixture of f1 HS(y):

f∗1 HS(y) =
πahs + πcc + πhc

πcc + πhc
f1 HS(y)− πahs

πcc + πhc
gahs(y).

We are then left with a classic two-component finite mixture model for f∗1 HS(y):

f∗1 HS(y) = φ ghc 1(y) + (1− φ) gcc 1(y),

with known mixing proportion φ = πhc
πcc+πhc

. In general, the component densities in a two-component

finite mixture model are not identifiable without additional restrictions (see, e.g., Hall and Zhou,

2003). See the main text for additional discussion.
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B Estimation

B.1 Prior distributions

Before computation, the outcome was centered by the global mean and re-scaled by the standard

deviation of the observed outcomes for the control group, so that all units were in terms of “ef-

fect size.” All covariates are either on a binary/unit scale or have been standardized. Throughout

we use default, weakly informative priors on all model parameters (Gelman et al., 2008). For re-

gression coefficients, all main coefficients have independent N(0, 1.52) priors; stratum-by-covariate

interaction terms have a tighter N(0, 0.252) prior. For multinomial logistic regressions, all coeffi-

cients have Cauchy(0, 2.5) priors (Gelman et al., 2008). All standard deviations have half-Cauchy

priors, with the scale set to 1, unless otherwise noted (Gelman, 2006). This effectively places a

flat prior over the space of 0 to 2, while allowing for much larger standard deviations if there is a

strong signal in the data. As the outcome has already been standardized to have a global standard

deviation of 1 (for the control group), an observed model standard deviation greater than 2 would

suggest an especially bad model fit. The prior for the site-level standard deviation is also given a

half-Cauchy(0,1) distribution. Following the recommendation among Stan developers, all random

effect correlation matrices are given weak LKJ priors (Lewandowski et al., 2009), which have more

attractive properties than the more standard inverse-Wishart distribution and which slightly fa-

vor an identity correlation matrix (Stan Development Team, 2014). Finally, missing pre-tests and

outcomes have a N(0, 1) prior, on the same order as the standardized outcome distribution.

B.2 ITT

For the ITT model, we use a standard varying intercept/varying slope model (i.e., a “random

effects” model), which accounts for center-level variation via multilevel modeling. Following Bloom

et al. (2014), we also estimate separate residual variances for the treatment and control groups.

Both the intercept, αj , and the treatment effect, τj , vary by site.

B.3 Estimating LATE

Imbens and Rubin (1997a) proposed a model-based estimation strategy for instrumental variables

models as an alternative to the standard Wald/Two-Stage Least Squares estimator. See Imbens

and Rubin (2015) for a textbook discussion of this approach. The key idea is that the usual ratio

estimators ignore individual-level information about compliance status, since they are based solely

on sample averages.
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Incorporating this information requires the use of a full likelihood:

Lobs(θ | y,x,d, z) =
∏

i:Di=0,Zi=1

πi:nt gnt(yi | θ,xi)×∏
i:Di=1,Zi=0

πi:at gat(yi | θ,xi)×

∏
i:Di=0,Zi=0

{
πi:nt gnt(yi | θ,xi) +

πi:co gco0(yi | θ,xi)
}
×∏

i:Di=1,Zi=1

{
πi:at gat(yi | θ,xi) +

πi:co gco1(yi | θ,xi)
}

In our setting, we incorporate weak prior information and estimate these parameters in a Bayesian

framework. Computationally, we jointly estimate two sub-models. The first is a multinomial logistic

regression predicting principal stratum membership as a function of covariates:

πs|x ≡ P(Si = s | θ,xi) =
exp(γs + δ′sxi)∑K
s=1 exp(γs + δ′sxi)

.

While we do not explore additional models here, we note that we could replace the multinomial

logit model with other discrete choice models, such as a multinomial probit model.

The second is an outcome model, effectively a separate regression for each compliance type:

yi | (S∗i = nt, θ,xi, zi) ∼ N
(
αnt + β′ntxi, σ

2
nt

)
yi | (S∗i = at, θ,xi, zi) ∼ N

(
αat + β′atxi, σ

2
at

)
yi | (S∗i = co, θ,xi, zi) ∼ N

(
αco + β′coxi + τzi, σ

2
co,z

)
where we partially pool the coefficients, βs,k ∼ N

(
µβ,k, η

2
k

)
, for k = 1, . . . ,K. The variance term

differs by principal stratum and, among Compliers, by treatment assignment (Bloom et al., 2014).

We then make two modifications to extend model-based IV to a multi-level setting. First, we

estimate a varying-intercept/varying-slope model separately for each principal stratum, where j[i]
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indicates the site j corresponding to child i:

yi | (S∗i = nt, θ,xi, zi) ∼ N
(
αnt + βntxi + ψj[i], σ

2
nt

)
yi | (S∗i = at, θ,xi, zi) ∼ N

(
αat + βatxi + ψj[i], σ

2
at

)
yi | (S∗i = co, θ,xi, zi) ∼ N

(
αco + βcoxi + ψj[i] + τzi + ωj[i]zi, σ

2
co,z

)
(
ψj

ωj

)
∼ N

((
βctrwj

0

)
,

(
η2
ψ ρηψηω

ρηψηω η2
ω

))

Second, we adjust the multinomial logistic regression to include a site-specific intercept. This

simple varying-intercept model is repeated across all three principal strata:

P(Si = s | θ,xi) =
exp(γs,j[i] + δ′sxi)∑K
s=1 exp(γs,j[i] + δ′sxi)

γn,jγa,j

γc,j

 ∼ N


µγ,n + δctrn wj

µγ,a + δctra wj

µγ,c + δctrc wj

 ,

η
2
γ,n 0 0

0 η2
γ,a 0

0 0 η2
γ,c




where the site-level coefficients, δctrs , vary across strata, as in the non-hierarchical model.
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B.4 Estimating the Principal Stratification Model

To estimate the full principal stratification model, we simply expand the likelihood from the in-

strumental variable model to account for the additional latent groups:

Lobs(θ | y,x,d, z) =
∏

i:Di=HS,Zi=0

{
πi:ahs gahs(yi | θ,xi)

}
×

∏
i:Di=Center,Zi=0

{
πi:cc gcc 0(yi | θ,xi) + πi:ac gac(yi | θ,xi)

}
×

∏
i:Di=Home,Zi=0

{
πi:hc ghc 0(yi | θ,xi) + πi:ah gah(yi | θ,xi)

}
×

∏
i:Di=?,Zi=0

{
πi:cc gcc 0(yi | θ,xi) + πi:hc ghc 0(yi | θ,xi) + πi:ah gah(yi | θ,xi)

}
×

∏
i:Di=HS,Zi=1

{
πi:ahs gahs(yi | θ,xi) + πi:cc gcc 1(yi | θ,xi) + πi:hc ghc 1(yi | θ,xi)

}
×

∏
i:Di=Center,Zi=1

{
πi:ac gac(yi | θ,xi)

}
×

∏
i:Di=Home,Zi=1

{
πi:ah gah(yi | θ,xi)

}
×

∏
i:Di=?,Zi=1

{
πi:ac gac(yi | θ,xi) + πi:ah gah(yi | θ,xi)

}
Table A4 gives this mapping in words. Section C describes the assumptions for an ignorable

missingness mechanism. As discussed in the main text, the corresponding outcome models are:

yobs
i | (Si = ahs, θ,xi, zi) ∼ N

(
αahs + βahsxi + ψj[i], σ

2
ahs

)
yobs
i | (Si = ac, θ,xi, zi) ∼ N

(
αac + βacxi + ψj[i], σ

2
ac

)
yobs
i | (Si = ah, θ,xi, zi) ∼ N

(
αah + βahxi + ψj[i], σ

2
ah

)
yobs
i | (Si = cc, θ,xi, zi) ∼ N

(
αcc + βccxi + ψj[i] + τcczi + ωj[i],cczi, σ

2
cc,z

)
yobs
i | (Si = hc, θ,xi, zi) ∼ N

(
αhc + βhcxi + ψj[i] + τhczi + ωj[i],hczi, σ

2
hc,z

)
,

where the variance terms for the two complier groups under treatment are assumed to be equal,

σ2
cc 1 = σ2

hc 1, and the random effects for site, {ψj}, are constrained to be equal across principal

strata. The site-level estimates follow a multivariate Normal distribution: ψj

ωj,cc

ωj,hc

 ∼ N


γwj

0

0

 ,Σ



where wj is a vector of site-level covariates and Σ is an unconstrained covariance matrix.
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B.5 Estimating the Principal Score Model

To illustrate principal score estimation, it is useful to start with the simpler instrumental variables

case—that is, for binary D∗.

First, under one-sided noncompliance (i.e., only Compliers and Never Takers), principal score

estimation proceeds almost identically to propensity score estimation in the usual observational

setting. In particular, due to randomization, the principal score in the treatment group is the same

as the overall principal score: P[Si = s | Zi = 1,Xi = x] = P[Si = s | Xi = x]. Since we can directly

observe compliance type in the treatment group, we simply estimate a model using covariates to

predict compliance type among treated units. See Hill et al. (2002) and Jo and Stuart (2009).

Second, under two-sided noncompliance (i.e., Compliers, Always Takers, and Never Takers),

we observe mixtures of compliance types under both treatment and control, which complicates

estimation. One approach is to proceed non-parametrically, using kernel density estimation to

estimate (πa|x, πc|x, πn|x). In high dimensions, however, this is impractical. Instead, we recommend

a simple data augmentation strategy, due to Ibrahim (1990) and applied to causal inference by,

among others, Aronow and Carnegie (2013) and Hsu and Small (2014). The essential idea is to use

the same model as in Section B.3, except without any outcomes:

• Estimate the principal score. Given the vector of compliance types, estimate the principal

score via multinomial logistic regression, ignoring treatment assignment.

• Impute compliance type. Given the principal score model, impute compliance types for

all individuals with unknown type.

The principal score approach for the full model (i.e., multi-valued D) proceeds exactly as under

the two-sided noncompliance setting. In addition, we extend the multinomial logistic regression to

account for center-level variation, as in Appendix B.3.

B.6 Estimating Quantile Treatment Effects

We provide a brief overview of our approach for estimating the quantile treatment effects (QTE)

by principal stratum.

We begin with the simpler setting without covariates. In this case, the overall QTE is simply

the differences in observed quantiles under treatment and control. The QTE for Compliers, also

known as IV-QTE, is

τco(q) = G−1
co 1(q)−G−1

co 0(q),

where G−1
sz (q) is the qth quantile for a given stratum outcome distribution, gsz(y). As with the main

results, there are two basic approaches for estimating τco(q). In the moment-based approach, we

non-parametrically estimate G−1
co1(q) and G−1

co0(q) and subtract (Imbens and Rubin, 1997b; Abadie

et al., 2002). In the Bayesian model-based approach with Normal components, we obtain posterior

estimates for µsz and σ2
sz. We then calculate the posterior predictive distribution for the QTE via

the Normal quantile function, Φ−1(q).
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The QTE for principal strata, PS-QTE, are:

τcc(q) = G−1
cc 1(q)−G−1

cc 0(q)

τhc(q) = G−1
hc 1(q)−G−1

hc 0(q).

As with estimating main effects, a moment-based approach is no longer possible. However, we can

still use the full principal stratification model to obtain posterior estimates for µsz and σ2
sz and

then use the Normal quantile function to calculate the posterior predictive distibution for the two

QTEs. Alternatively, we can use the same stratification model to impute stratum membership

for each MCMC iteration. We then directly estimate the PS-QTE for all Center Compliers and

Home Compliers for a given MCMC iteration (i.e., by directly estimating the quantiles among all

Center Compliers at that iteration), and combine the resulting estimates across iterations. While

this second approach does not depend as directly on the assumption of Normality, the estimates

are still sensitive to the parametric model, especially in the tails.

Estimation is more complicated with covariates. In particular, there are two possible objects

of interest: conditional and unconditional QTEs. For the conditional QTE, the impacts are on the

outcome distributions conditional on covariates. Estimation of the conditional QTE is straight-

forward via quantile regression (e.g., Abadie et al., 2002; Angrist and Pischke, 2008). For the

unconditional QTE, the impacts are on the marginal outcome distributions. Firpo (2007) proposes

to estimate these effects via the difference between weighted treatment and control quantiles, with

inverse propensity score weights. Frölich and Melly (2013) proposes a slightly different set of weights

to estimate the unconditional IV-QTE. Following Bitler et al. (2014), we focus on the unconditional

QTE here.

As in the no covariates case, there are two main approaches. First, we can obtain posterior

estimates for all the principal stratification model parameters, directly compute the posterior pre-

dictive distribution at each value of the covariates, and then combine. Figure A1 shows these results

for the Head Start year for all Compliers, Center Compliers, and Home Compliers. Second, Second,

we can use the model to impute stratum membership for each MCMC iteration. We can then use

the inverse propensity score weighting approach of Firpo (2007) to estimate the covariate-adjusted

unconditional IV-QTE and PS-QTE for each MCMC draw, combining estimates across iterations

for final inference. As in the no covariate case, this approach relies less on the Normality assump-

tion, but is still likely to be sensitive to the particular model choice. Figure 4 shows comparable

estimates using the inverse propensity score weighting approach. As expected, the results are very

similar between the two approaches, though the impacts at the bottom of the distribution are larger

without relying directly on the Normal quantiles.
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(a) All Compliers.
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(b) Center Compliers.
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(c) Home Compliers.

Figure A1: Quantile treatment estimates by compliance type for the Head Start year using the
Normal approximation, with approximate 90 percent credible intervals.
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B.7 Posterior Predictive Checks

Following Rubin et al. (1984) and Gelman et al. (2013), we use posterior predictive checks to assess

the fit of our full model to the observed data. Formally, let y be the observed data and θ be the

parameter vector. Define yrep as the replicated data that could have been observed if the study

were replicated with the same model and the same value of θ that produced y. We can estimate

the distribution of yrep via the posterior predictive distribution,

p(yrep | y) =

∫
p(yrep | θ)p(θ | y)dθ.

The intuition is to assess whether the replicated data produced from the model are similar to the

observed data.

First, we can visually compare the overall distributions of y and yrep. Figure A2 shows a

histogram of the observed data, y, and five replicated data sets, yrep, for PPVT score. The his-

tograms are indistinguishable from each other, suggesting that the model correctly captures the

main features of the outcome distribution.

Second, we compare specific features of the distributions for y and yrep. Define T (y) as a test

statistic that only depends on the data. We then determine whether the observed value of the test

statistic, T (y), is similar to the test statistics for the replicated data, T (yrep). We can assess this

numerically via a posterior predictive p-value:

ppp = P{T (yrep) ≥ T (y) | data}.

Intuitively, this is the proportion of replicated test statistics that are more extreme than the ob-

served test statistic. We can also assess this discrepancy using visual summaries.

A key issue is choosing an appropriate test statistic. Following Barnard et al. (2003) and Mattei

et al. (2013), we use the following three test statistics, which aim to assess whether the model

captures broad features of the signal and noise available in the data:

• Tsignal(y) = |Y s1 − Y s0|, where Y sz is the outcome mean for all children in stratum s and

condition z

• Tnoise(y) =

√
s2s1
Ns1

+
s2s0
Ns0

, where s2
sz is the outcome variance for all children in stratum s and

condition z

• Tratio(y) =
Tsignal(y)
Tnoise(y)

We then compare T (yrep) to T (y) for each test statistic and each stratum to compute a posterior

predictive p-value, where values close to 0 or 1 indicate poor model fit. As shown in Table A1, all

posterior predictive p-values are away from the extremes, showing excellent model fit overall.
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Figure A2: Overall outcome distributions for the observed data, y, and five replicated data sets,
yrep, using PPVT score.
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Table A1: Posterior Predictive p-values

Stratum Tsignal(y) Tnoise(y) Tratio(y)

Always Head Start 0.77 0.41 0.77
Always Center-based 0.21 0.38 0.22
Always Home-based 0.40 0.20 0.41

Center-based Compliers 0.59 0.48 0.60
Home-based Compliers 0.40 0.09 0.46

C Missing Data

Survey nonresponse and general data missingness present major hurdles in the analysis of the Head

Start Impact Study. In general, we account for three types of missing data in our analysis: missing

outcomes, missing care type, and missing covariates. We focus in particular on missing pre-test

scores, since this variable presents a unique set of challenges.

C.1 Missing Outcomes

As shown in Table A2, a substantial proportion of test scores scores are missing, with differential

missingness by treatment status. Moreover, this missingness pattern is non-monotone; for example,

some children have missing outcomes in the second year of observation but observed outcomes in

the third year.

Table A2: Percent Missing PPVT Score.

Control Treatment Difference

Pre-Test 0.33 0.19 -0.13
HS Year 0.24 0.13 -0.11
Pre-K/K 0.24 0.16 -0.08

K/1st 0.27 0.19 -0.08

Failing to account for such missingness, especially the differential missingness across experimen-

tal conditions, can lead to biased estimates (Frangakis and Rubin, 1999). A common approach to

address this issue is to assume that outcomes are Missing at Random (MAR) (Rubin, 1976):

Mi ⊥⊥ Yi | Xi, Zi, D
obs
i (Missing at Random)

where Mi is an indicator for missing outcome. We can re-write this as: P{Mi | Yi,Xi, Zi, D
obs
i } =

P{Mi | Xi, Zi, D
obs
i }. In other words, given covariates, treatment assignment, and observed child

care setting, missing outcomes are just as likely to be low test scores as high test scores. This

is a very sensible assumption in the Head Start Impact Study, as the data collection procedure

depended heavily on the child’s care setting.

Although implicit, this is the assumption behind the nonresponse adjustment in the official
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HSIS report. Specifically, Puma et al. (2010a) estimate a model predicting item nonresponse as a

function of child and family covariates, geography, Head Start offer, whether the child enrolled in

Head Start, and other missingness indicators (e.g., missing pre-test score). The authors then weight

units by the inverse of the predicted probability of nonresponse See the main text for additional

discussion of weighting in HSIS. We make the same key assumption but implement this via the

likelihood rather than via nonresponse weights (Mealli et al., 2004; Frumento et al., 2012). In that

case, the missingness mechanism is ignorable (Rubin, 1976) since the likelihood factors such that the

distribution of missingness indicators can be ignored in subsequent estimation. For computational

reasons, we explicitly impute the missing outcomes rather than simply drop these terms from the

likelihood, though the parameter estimation is the same.

Finally, we note that other missingness mechanisms are possible here. One promising but more

technical assumption is Latent Ignorability (Frangakis and Rubin, 1999):

Mi ⊥⊥ Yi | Xi, Zi, Si. (Latent Ignorability)

Here, the missingness mechanism depends not only on observed care type, but also on the child’s

principal stratum. In other words, for control group children in center care, the probability of

missingness could differ for Center Compliers and Always Center children. Nonetheless, there is no

reason to believe that this relaxation is necessary here.

C.2 Missing Care Type

Based on survey responses alone, approximately 15 percent of children are missing information

on their focal care setting. Using information elsewhere in the data, we can re-classify around

one-third of these children. First, we utilize administrative data for “no shows” and “crossovers”

collected for purposes of determining the IV estimate, which re-classifies 118 children. Second, we

utilize Fall 2002 survey responses for parents who did not respond to the Spring 2003 survey, which

re-classifies an additional 99 children. Table A3 shows detailed information for this procedure.

Table A3: Missing Care Type

Raw Survey + Admin. Data + Fall 2002 Survey

Head Start 2,083 2,201 2,202
Other Center-Based Care 634 634 654
Other Home-Based Care 1,014 1,014 1,092

Unknown 654 536 437

Even after this effort, there is still substantial substantial missingness: with 16 percent of

control group children and 6 percent of treatment group are missing care type, as shown in Table 2.

Following Frumento et al. (2012), we assume that children with missing care type would belong to

one of the otherwise existing principal strata, which means that children with missing care type are

simply added to the likelihood components for these other strata. These relationships are shown in
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Table A4. Importantly, we assume that children with missing care type could be in center care or

home care, but not in Head Start; this is sensible since HSIS staff kept exhaustive records of Head

Start attendance. Therefore, treatment group children with missing care type could be in either

the Always Center or Always Home strata, but could not be Compliers, with the probability of

being in the Always Center vs. Always Home stratum dependent on covariates and the outcome.

Table A4: Expanded version of Table 5b: Relationship between care type and principal stratum

Zi Dobs
i Possible Principal Strata

1 HS Always Head Start, Center Complier, Home Complier

1 Center Always Center

1 Home Always Home

1 ? Always Center, Always Home

0 HS Always Head Start

0 Center Always Center, Center Complier

0 Home Always Home, Home Complier

0 ? Always Home, Home Complier, Always Center, Center Complier

C.3 Missing Covariates

As with outcomes and care setting, many children are missing a number of key covariates. The

public use file for HSIS imputes these missing covariates, primarily via hot deck imputation. Im-

portantly, the observed “donor cases” chosen for the hot deck were selected not only on the basis

of covariates available in the HSIS file, but also on geographic and other programmatic variables

not available to the public.

Ideally, we would multiply impute missing covariates alongside missing outcomes and missing

care type, such as in Frumento et al. (2012). However, given the computational demands of multiple

imputation and the non-public factors utilized for hot deck imputation, we use the imputed variables

in the public use files. Note that this ignores the uncertainty associated with this imputation, though

this uncertainty is likely quite small.

Finally, two of the 340 Head Start centers were missing all geocoded data. Note that while

these were coded in the data file as centers, these are actually two of the grantees for which

randomization was performed at the grantee level, rather than at the center/center group level.

Given the small proportion of missingness here, we use simple mean value imputation to create a

complete center-level data file.
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C.4 Missing Pre-Test

The pre-test introduces several complications into the HSIS analysis. First, the pre-test is not,

in fact, a true pre-test, since the test was conducted up to halfway through the Head Start year.

However, we can reasonably assume the tests were administered early enough in the year that there

was no meaningful treatment effect. The observed pre-tests are consistent this assumption.

Second, missingness is substantially higher in the control group than in the treatment group.

As we do with missing outcomes, we multiply impute missing pre-test scores under the assumption

of Missingness at Random:

Mi ⊥⊥ Prei | Xi, Zi, D
obs
i .

While this is a reasonable assumption for the missingness mechanism, the resulting imputations are

conditional on Dobs. As a result, we cannot simply include these imputed scores in a later outcome

regression, since the dependence on a post-treatment outcome would induce bias. At the same

time, both M and Pre show large differences by observed care type, which suggests that dropping

the dependence on Dobs altogether is not appropriate. Fortunately, we can sidestep this issue by

conditioning on principal stratum membership, Si ≡ (Di(0), Di(1)), as well as X. Formally, we can

factor the joint distribution of missingness and pre-test as follows under the MAR assumption:

P{Mi, P rei | Xi, Zi, D
obs
i } = P{Mi | Xi, Zi, D

obs
i } · P{Prei | Xi, Zi, D

obs
i }

= P{Mi | Xi, Zi, D
obs
i } · P{Prei | Xi, Si}

Ideally, we would incorporate the uncertainty in the imputation by drawing a new value of Prei

for every MCMC iteration, using an imputation model that does not condition on either Z or Y .

This is difficult in practice, however, especially with Stan. As a result, we adopt a hybrid approach

similar to Frumento et al. (2012). First, we generate five separate data sets, which are identical

except for different draws of the imputed pre-test score. Second, we run separate MCMC chains on

each data set and combine these for final inference. Overall, we find very good convergence with

this approach.

D Proofs

Proof of Lemma 1 (Non-Parametric Identification of the Distribution of Principal

Strata).

The proof below is a simple extension of Lemma 3.1 in Abadie (2003). Under monotonicity

and valid randomization, we have the following series of equalities, relating oberved population

proportions to principal strata proportions. We repeatedly condition on X to emphasize the role

of covariates, though for complete randomization, this equality holds unconditionally.
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P{D1 = HS | Z = 1, X} = P{S = Always Head Start | X}
+P{S = Center Complier | X}
+P{S = Home Complier | X}

P{D1 = Center | Z = 1, X} = P{S = Always Center | X}

P{D1 = Home | Z = 1, X} = P{S = Always Home | X}

P{D0 = HS | Z = 0, X} = P{S = Always HS | X}

P{D0 = Center | Z = 0, X} = P{S = Always Center | X}
+P{S = Center Complier | X}

P{D0 = Home | Z = 0, X} = P{S = Always Home | X}
+P{S = Home Complier | X}

We can then immediately identify the following:

P{S = Always HS | X} = P{Dobs = HS | Z = 0, X}

P{S = Always Center | X} = P{Dobs = Center | Z = 1, X}

P{S = Always Home | X} = P{Dobs = Home | Z = 1, X}

Substituting these into the first set of equations:

P{S = Center Complier | X} = P{Dobs = Center | Z = 0, X} − P{S = Always Center | X}
= P{Dobs = Center | Z = 0, X} − P{Dobs = Center | Z = 1, X}

P{S = Home Complier | X} = P{Dobs = Home | Z = 0, X} − P{S = Always Home | X}
= P{Dobs = Home | Z = 0, X} − P{Dobs = Home | Z = 1, X}

Therefore, the principal score, P{S = s | X}, is non-parametrically identified for all principal

strata, s.

Proof of Lemma 2 (Distribution of Covariates by Principal Stratum). The proof is

immediate. We want to identify the quantity P{Xi = x | Si = s}. From Bayes’ Rule:

P{Xi = x | Si = s} =
P{Si = s | Xi = x} · P{Xi = x}

P{Si = s}

From Lemma 1, we can non-parametrically identify P{Si = s}. Due to randomization, we can

also identify P{Si = s | Xi = x}. Finally, we can identify the overall distribution of covariates in

the sample, P{Xi = x}. Therefore, P{Xi = x | Si = s} is non-parametrically identified.
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See Abadie (2003) for a similar argument.
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