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Abstract

Principal stratification is a widely used framework for addressing post-randomization complications in
a principled way. After using principal stratification to define causal effects of interest, researchers
are increasingly turning to finite mixture models to estimate these quantities. Unfortunately, standard
estimators of the mixture parameters, like the MLE, are known to exhibit pathological behavior. We
study this behavior in a simple but fundamental example: a two-component Gaussian mixture model in
which only the component means are unknown. Even though the MLE is asymptotically efficient, we show
through extensive simulations that the MLE has undesirable properties in practice. In particular, when
mixture components are only weakly separated, we observe “pile up”, in which the MLE estimates the
component means to be equal, even though they are not. We first show that parametric convergence can
break down in certain situations. We then derive a simple moment estimator that displays key features
of the MLE and use this estimator to approximate the finite sample behavior of the MLE. Finally, we
propose a method to generate valid confidence sets via inverting a sequence of tests, and explore the case
in which the component variances are unknown. Throughout, we illustrate the main ideas through an
application of principal stratification to the evaluation of JOBS II, a job training program.
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1 Introduction

Principal stratification is a widely used framework for addressing post-randomization complications in a

principled way (Frangakis and Rubin, 2002). Typically, the goal is to estimate a causal effect within a

partially latent subgroup known as a principal stratum. While there are many possible ways to estimate

these principal causal effects, by far the most common approach is via finite mixture models, treating the

unknown principal strata as mixture components (Imbens and Rubin, 1997). To date, scores of applied and

methodological papers have relied on finite mixtures to estimate causal effects, both explicitly and implicitly.

At the same time, it has long been conventional wisdom that finite mixture models can yield patho-

logical estimates (Redner and Walker, 1984). As Larry Wasserman remarked, finite mixture models are

the “Twilight Zone of Statistics” (Wasserman, 2012). Our motivation for this paper is to understand how

the pathological features of finite mixture models affect inference for component-specific means, which is a

central challenge in principal stratification and is also of general scientific interest.

Despite the wealth of literature on finite mixture models, there is relatively little research on the behavior

of standard estimators like the Maximum Likelihood Estimate (MLE) in settings typical of principal strati-

fication, namely when substantial separation between mixture components is unlikely. We take a first step

by carefully studying a simple but fundamental model: a two-component homoskedastic Gaussian mixture

model,

Yi
iid
„ πN pµ0, σ

2q ` p1´ πqN pµ1, σ
2q, (1.1)

in which only the component means, tµ0, µ1u, are unknown. That is, we assume that the mixing proportion,

π, is known and that 0 ă π ă 1
2 .1 We also assume that the within component variance, σ2, is known and

equal between components (we later relax these restrictions). As we show, identification for µ0 and µ1 is

immediate and unambiguous. Moreover, when the number of components is known (i.e., µ0 ‰ µ1), the usual

regularity conditions apply (Everitt and Hand, 1981). In other words, the MLE should be well-behaved in

this simple example.2 Unfortunately, this does not bear out in practice: even when the model is correctly

specified and when µ0 ‰ µ1, the MLE behaves poorly in many realistic settings (Day, 1969; Hosmer Jr, 1973;

Redner and Walker, 1984).

1.1 Our contribution

In this paper, we (1) document two pathologies for the MLE of component-specific means that arise when

components are not well separated; (2) use moment equations to build intuition for these pathologies and

to characterize their behavior as a function of mixture parameters; and (3) propose a method to construct

confidence sets via test inversion. In general, we present results for the standard mixture case and then

explore additional complications that arise in the context of principal stratification models.

First, the main inferential challenge for the mixture model in Equation 1.1 is estimating the difference in

component means, ∆ ” µ0 ´ µ1. There are two key issues. The first issue is known as pile up, which occurs

when the likelihood surface for ∆ is unimodal and centered at zero, despite the fact that ∆ ‰ 0. Even with

1Similarly to Tan and Chang (1972), we assume that π ă 1{2 so that the mixture is identified and to avoid degeneracy of the
third cumulant of the mixture distribution when π “ 1{2. Apart from the restriction that π ‰ 1{2, this is completely general,
since we can simply switch the component labels.

2Note that this is distinct from understanding the convergence of EM and related algorithms, as we are considering the
performance of the MLE rather than our ability to find it. Balakrishnan et al. (2014) give a recent discussion.
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a bimodal likelihood, the same underlying pathology that causes pile up can also lead to severe bias in the

MLE. The second issue is the classic problem of choosing the global mode in a bimodal likelihood (McLachlan

and Peel, 2004). This problem is particularly pernicious in the settings we explore here. In our simulations,

the usual heuristic of choosing the mode with the higher likelihood is typically no better than a coin flip,

often yielding the opposite sign from the truth, sgn
´

p∆mle
¯

‰ sgnp∆q.

From a theoretical perspective, complications arise when ∆ is non-zero but still “close enough” to zero

(zero is the point at which the regularity conditions no longer hold). Hence, ∆ is still point identified but

identification is weak. There are many examples of weak identification in other settings, including the weak

instruments problem (Staiger and Stock, 1997) and the moving average unit root problem, which is the source

of the term pile up (Shephard and Harvey, 1990; Andrews and Cheng, 2012). Chen et al. (2014) previously

explored issues of weak identification in finite mixtures, though with a very different goal. In the spirit of

this broad literature, we also show that “standard” asymptotic results for finite mixtures can break down in

certain cases.

To understand the behavior of the MLE in finite samples, we must investigate the likelihood equations

directly. As these are analytically intractable, we develop intuition by deriving a simple method of moment

estimator that captures key features of the MLE. We connect the pathologies that we observe to the difficulty

of estimating non-linear functions of the sample variance and skewness. We then derive analytic formulas

for the probability that each pathology will occur in a given setting and conduct simulations to show that

the MLE and moment estimator display these behaviors at similar rates. Overall, these diagnostic formulas

are analogous to design or power calculations, giving a sense of the behavior of estimates prior to actually

running the analysis.

There are many possible solutions to counter the pathologies outlined above. Following common prac-

tice in other settings with weak identification, we suggest one based on test inversion, namely generating

simulation-based p-values for a grid of values of ∆ and then inverting these tests to form confidence sets.

This approach is known as a grid bootstrap in time series models (Andrews, 1993; Hansen, 1999; Mikusheva,

2007) and is closely related to the parametric bootstrap for the Likelihood Ratio Test statistic in finite

mixture models (McLachlan, 1987; Chen et al., 2014). When the model is correctly specified, this approach

yields exact p-values up to Monte Carlo error. This approach works well in the settings we explore here.

Finally, we discuss the case when the within-component variance, σ2, is unknown, both for the equal-

and unequal-variance case. We show that the performance of the MLE is even worse in this setting, with

substantial bias for realistic values of ∆.

Although the technical discussion focuses narrowly on finite mixtures, our motivation remains the broader

question of inference for causal effects within principal strata. To date, only a handful of papers have directly

addressed the finite sample properties of mixtures for causal inference. Griffin et al. (2008) conduct extensive

simulations and conclude that principal stratification models are generally impractical in social science

settings. Mattei et al. (2013) caution that univariate mixture models often yield poor results and suggest

jointly estimating effects for multiple outcomes, such as by assuming multivariate Normality. Mercatanti

(2013) proposes an approach for inference with a multimodal likelihood in the principal stratification setting.

Frumento et al. (2016) explore methods for quantifying uncertainty in principal stratification problems when

the likelihood is non-ellipsoidal. See also Zhang et al. (2008), Richardson et al. (2011), and Frumento et al.

(2012). Following Mattei et al. (2013), we illustrate the key concepts through the evaluation of JOBS II,
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a job training program that has served as a popular example in the causal inference literature (see, for

example, Vinokur et al., 1995; Jo and Stuart, 2009).

1.2 Related literature on finite mixtures

There is a vast literature on inference in finite mixture models, dating back to the seminal work of Pearson

(1894). Everitt and Hand (1981), Redner and Walker (1984), Titterington et al. (1985), and McLachlan and

Peel (2004) give thorough reviews. Frühwirth-Schnatter (2006) focuses on the Bayesian paradigm; Lindsay

(1995) gives an overview of moment estimators; and Moitra (2014) discusses the research from machine

learning. We briefly highlight several relevant aspects of this literature.

First, many early researchers used simulation to study the finite sample performance of moment and max-

imum likelihood estimators for finite mixtures (Day, 1969; Tan and Chang, 1972; Hosmer Jr, 1973). Redner

and Walker (1984) give an extensive review. Interestingly, we are aware of very few simulation studies on

the performance of these estimators published since Redner and Walker (1984), despite dramatic changes

in computational power in the intervening thirty years. Frumento et al. (2016) offer an important recent

exception in the context of principal stratification models. Consistent with our results, the authors find

poor coverage for standard confidence intervals computed via the MLE plus information- or bootstrap-based

standard errors. See also Chung et al. (2004).

Second, there has been extensive research on the asymptotic behavior of finite mixtures models. The

standard result is that, with a known number of components and under general regularity conditions, mixture

parameters have
?
n-convergence (Redner and Walker, 1984; Chen, 1995). Chen (1995), however, shows that

parametric convergence can break down in certain cases (see also Heinrich and Kahn, 2015). Similar issues

arise in the asymptotic distribution of the Likelihood Ratio Test (LRT) statistic for testing the number

of components in finite mixtures (McLachlan and Peel, 2004). McLachlan (1987) proposes a parametric

bootstrap to resolve these issues in settings including the two-component Gaussian mixture model. Chen

et al. (2014) propose a similar method when the parameters are near but not at a singularity in the parameter

space. In their setting, however, the goal is to estimate the mixing proportions, π, although the broad

argument is quite similar to what we discuss here. The asymptotic behavior of the LRT with known mixing

proportion, π, is addressed in Quinn et al. (1987), Goffinet et al. (1992) and Polymenis and Titterington

(1999). See also Aitkin and Rubin (1985).

Finally, the sign error issue we address is exactly the well-studied question of choosing the “correct”

mode in a multi-modal likelihood. McLachlan and Peel (2004) and Blatt and Hero (2007) give reviews.

In virtually all cases, the standard recommendation is to choose the mode with the highest value of the

likelihood. Some exceptions include Gan and Jiang (1999) and Biernacki (2005), who introduce tests that

leverage different methods for computing the score function; Mercatanti (2013), who suggests a method

that incorporates moment estimates; and Frumento et al. (2012), who propose a scaled log-likelihood ratio

statistic to compare different modes.

1.3 Bayesian inference for finite mixtures

Finite mixture models are an important topic in Bayesian statistics, in part because mixtures fit naturally

into the Bayesian paradigm (Frühwirth-Schnatter, 2006). This approach offers some distinct advantages
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over likelihood-based inference.3 For example, the Bayesian can incorporate informative prior information,

which can be especially important in finite mixture modeling; see, for example, Aitkin and Rubin (1985);

Hirano et al. (2000); Chung et al. (2004); Lee et al. (2009); Gelman (2010). Moreover, our concern about

sign error is trivial in the Bayesian setting: the global mode is simply a poor summary of a multi-modal

posterior. More broadly, the weak identification issues we highlight in this paper are not necessarily relevant

to a strict Bayesian. Imbens and Rubin (1997) and Mattei et al. (2013), for example, characterize weak

identification as substantial regions of flatness in the posterior, which increases uncertainty but does not

lead to any fundamental challenges.4

Nonetheless, we argue that our results are highly relevant for Bayesians who are also interested in good

frequency properties (Rubin, 1984). In the supplementary materials, we offer evidence that the pathological

behaviors we document for the MLE also hold for the posterior mean and median with some “default” prior

values. In this sense, we conduct a Frequentist evaluation of a Bayesian procedure (e.g., Rubin, 2004) and

find poor frequency properties overall. More generally, we agree that informative prior information can be

a powerful tool for improving inference in this setting. Our results provide a framework for assessing how

strong that prior information must be to avoid the pitfalls that we document, for example, by extending the

grid bootstrap to incorporate a prior.

1.4 Paper plan

The paper proceeds as follows. In Section 2, we give an overview of finite mixture models and their appli-

cations to causal inference. In Section 3, we describe finite sample properties of the MLE and give results

when the separation between µ1 and µ0 goes to zero asymptotically. In Section 4, we derive the method of

moments estimator, characterize the pathologies, and connect these results to the MLE. In Section 5, we

propose methods for obtaining confidence intervals for the component means via test inversion. In Section 6,

we apply these methods to the JOBS II example. In Section 7, we relax the assumption of known variance.

We conclude with some thoughts on possible next steps.

Finally, the supplementary materials address several points that go beyond the main text. First, we give

additional discussion on applying these results to the principal stratification. In particular, we discuss the

role of covariates, which are widely used as part of principal stratification models (e.g., Jo, 2002; Zhang et al.,

2009). In general, we find that simply adding covariates without also incorporating additional restrictions

(such as conditional independence assumptions) can increase the probability of obtaining a pathological

result. Second, we address the performance of both the case-resampling bootstrap and Bayesian methods

in this setting, finding poor performance overall. Finally, we give a much more detailed proof of the main

theorem.

3The Bayesian approach also introduces some unique challenges that we do not address here, namely the label-switching prob-
lem (Celeux et al., 2000; Jasra et al., 2005) and the difficulty of specifying vague prior distributions for finite mixtures (Grazian
and Robert, 2015).

4Imbens and Rubin (1997) note that “issues of identification [in the Bayesian perspective] are quite different from those
in the frequentist perspective because with proper prior distributions, posterior distributions are always proper. The effect
of adding or dropping assumptions is directly addressed in the phenomenological Bayesian approach by examining how the
posterior predictive distributions for causal estimands change.”
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2 Finite mixtures in causal inference

2.1 Setup

To illustrate the role of finite mixtures in causal inference, we begin with the canonical example of a ran-

domized experiment with noncompliance. We set up the problem using the potential outcomes framework

of Neyman (1923) and Rubin (1974). We observe N individuals who are randomly assigned to a treatment

group, Ti “ 1, or control group, Ti “ 0. As usual, we assume that randomization is valid and that the Stable

Unit Treatment Value Assumption holds (SUTVA; Rubin, 1980; Imbens and Rubin, 2015). This allows us

to define potential outcomes for individual i, Yip0q and Yip1q, under control and treatment respectively, with

observed outcome, Y obs
i “ TiYip1q ` p1 ´ TiqYip0q. The fundamental problem of causal inference is that we

observe only one potential outcome for each unit.

We define the Intent-to-Treat (ITT) effect as the impact of randomization on the outcome,

ITT “ ErYip1q ´ Yip0qs.

Throughout, we take expectations and probabilities to be over a hypothetical super-population.

In practice, there is often noncompliance with treatment assignment (Angrist et al., 1996). Let Di be an

indicator for whether individual i receives the treatment, with corresponding compliance Dip0q and Dip1q

for control and treatment respectively. For simplicity, we assume that only individuals assigned to treatment

can receive the active intervention (i.e., there is one-sided noncompliance), which is the case in the JOBS II

evaluation. Formally, Dip0q “ 0 for all i. This gives two subgroups of interest: Never Takers, Dip1q “ 0, and

Compliers, Dip1q “ 1. Following Angrist et al. (1996) and Frangakis and Rubin (2002), we refer to these

subgroups interchangeably as compliance types or principal strata, Ui P tc,nu, with “c” denoting Compliers

and “n” denoting Never Takers. The estimands of interest are the ITT effects for Compliers and Never

Takers:

ITTc “ ErYip1q ´ Yip0q | Ui “ cs “ µc1 ´ µc0,

ITTn “ ErYip1q ´ Yip0q | Ui “ ns “ µn1 ´ µn0,

in which µc1, µc0, µn1, and µn0 represent the outcome means for Complier assigned to treatment, Compliers

assigned to control, Never Takers assigned to treatment, and Never Takers assigned to control, respectively.

In the case of one-sided noncompliance, we observe stratum membership for individuals assigned to

treatment. Therefore, we can immediately estimate µc1 and µn1. Moreover, due to randomization, the

observed proportion of Compliers in the treatment group is, in expectation, equal to the overall proportion

of Compliers in the population, π ” PtUi “ cu. Thus, we treat π as essentially known or, at least, directly

estimable. The main inferential challenge is that we do not observe stratum membership in the control

group. Rather we observe a mixture of Compliers and Never Takers assigned to treatment:

Y obs
i | Zi “ 0 „ πfc0pyiq ` p1´ πqfn0pyiq, (2.1)

where fu0pyq is the distribution of potential outcomes for individuals in stratum u assigned to control.

The standard solution for this problem is to invoke the exclusion restriction for Never Takers, which
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states that ITTn “ 0, or equivalently, µn1 “ µn0. With this assumption, we can then estimate ITTc with the

usual instrumental variables approach (Angrist et al., 1996). Without this assumption, however, we need to

impose other structure on the problem to achieve point identification (see, e.g., Zhang and Rubin, 2003).

2.2 Model-based principal stratification

One increasingly common option is to invoke parametric assumptions for the fu0pyq. In a seminal paper, Im-

bens and Rubin (1997) outlined a model-based framework for instrumental variable models, proposing a

parametric model for the outcome distribution conditional on stratum membership and treatment assign-

ment, such as fuzpyiq “ N pµuz, σ2
uzq, with u representing stratum membership and z representing treatment

assignment. While the exclusion restriction can strengthen inference in this setting, it is not strictly neces-

sary. Instead, identification is based entirely on standard results for mixture models.

Since Imbens and Rubin (1997), dozens of papers have used finite mixtures for estimating causal effects.5

For simplicity, we focus on applications of principal stratification in which the researcher assumes that certain

principal strata do not exist (i.e., monotonicity) and it is possible to directly estimate the distribution of

principal strata. For example, in the case of two-sided noncompliance, the “no Defiers” assumption makes this

possible (Angrist et al., 1996). While the more general case is important, inference is also more challenging.

See Page et al. (2015) for a brief discussion of these assumptions.

For our example of one-sided noncompliance, we can write the observed data likelihood with Normal

component distributions as:

Lobspθq “
ź

i: Zi“1, Dobs
i “1

πN pyi | µc1, σ
2
c1q ˆ

ź

i: Zi“1, Dobs
i “0

p1´ πqN pyi | µn1, σ
2
n1q ˆ

ź

i: Zi“0

“

πN pyi | µc0, σ
2
c0q ` p1´ πqN pyi | µn0, σ

2
n0q

‰

,

where θ represents the vector of parameters andN pyi | µ, σ2¨q is the Normal density with mean µ and variance

σ2. The observed data likelihood for individuals assigned to treatment (Zi “ 1) immediately factors into

the likelihood for the Compliers and the likelihood for the Never Takers. We can directly estimate the

component parameters under treatment, µc1, µn1, σ2
c1, and σ2

n1. We can also directly estimate π among

individuals assigned to treatment. Therefore, we are essentially left with a two-component Normal mixture

model with known π among those individuals assigned to control.6 Note that the mixture portion of this

likelihood is in general unbounded due to the possibility of either σ2
u1 or σ2

u0 being close to 0. However, the

whole likelihood is bounded with probability one due to the effect of the non-mixture terms.7

5Some examples of other relevant papers are Little and Yau (1998); Hirano et al. (2000); Barnard et al. (2003); Ten Have
et al. (2004); Gallop et al. (2009); Zhang et al. (2009); Elliott et al. (2010); Zigler and Belin (2011); Frumento et al. (2012);
Page (2012); Schochet (2013).

6Note that there is a very small amount of information about π from the mixture model among those assigned to the control
group. Given the other complications that arise in mixture modeling, we ignore this and treat π as being estimated directly
from the treatment group.

7We are assuming that at least one observation is made in each compliance stratum of the treatment group.
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To estimate ITTc and ITTn, we need to estimate µc0 and µn0. This means that the component-specific

variances, σ2
c0 and σ2

n0, are nuisance parameters. We initially assume that the component-specific variances

are constant across components: σ2 “ σ2
c1 “ σ2

c0 “ σ2
n1 “ σ2

n0 (see, for example, Gallop et al., 2009). Since

we can directly estimate σ2
c1 and σ2

n1, this means that we no longer need to estimate the component-specific

variances in the finite mixture model and can treat these parameters as known.8 We relax this assumption

in Section 7.

2.3 JOBS II

For a running example, we use the Job Search Intervention Study (JOBS II), a randomized field experiment

of a mental health and job training intervention among unemployed workers (Vinokur et al., 1995) that has

been extensively studied in the causal inference literature (Jo and Stuart, 2009; Mattei et al., 2013). We

focus on a subset of N “ 410 high risk individuals, with N1 “ 278 randomly assigned to treatment and

N0 “ 132 randomly assigned to control. For illustration, we estimate the impact of the program on (log)

depression score six months after randomization.

An important complication in this study is that only 55% of those individuals assigned to treatment

actually enrolled in the program. Therefore, we are not only interested in the overall ITT, but also in the

ITT for Compliers and the ITT for Never Takers. Note that we do not invoke the exclusion restriction for

Never Takers; in other words, we want to estimate ITTn rather than assume that ITTn “ 0. To do so, we

follow Mattei et al. (2013) and assume the outcome distribution is Normal for each U and Z combination.

As an intermediate step, we are interested in ∆ “ µc0 ´ µn0 for this model.

Figure 1 shows the distribution of the MLE of ∆ for 1000 fake data sets generated from a two-component

homoskedastic Normal mixture model with N “ 132, π “ 0.55, and σ “ 1 (so that all estimates are in effect

size units).9 In Figures 1a and 1b, the assumed values of ∆ are 0.5 and 1.0 standard deviations, respectively,

which are quite large differences in the context of JOBS II. Clearly the sampling distribution of the MLE is

markedly non-Normal, showing strong bimodality in addition to a large spike around zero.

3 Likelihood inference in finite mixture models

3.1 Asymptotic results

We begin by documenting that standard asymptotic results can break down when components are not well

separated. In particular, standard results state that, with a known number of components and under general

regularity conditions, mixture parameters have
?
n-convergence (Redner and Walker, 1984; Chen, 1995).

Based on examples like those in Figure 1, these results do not necessarily “kick in” for settings where the

difference in component means is small relative to the sample size. To explain this disconnect, we consider

the case in which Yi are distributed as in Equation 1.1 but the value of the component means µ1 and µ0

vary with n, becoming µ1,n and µ0,n. Correspondingly, the separation of means becomes

8As with the mixing proportion, there is a very small amount of information about the overall σ2 in the finite mixture model.
Again, we ignore this complication.

9Note that this does not fit into the parameterization of Equation 1.1, but that all the same results hold for π ą 1{2 and
∆ “ µ1 ´ µ0. We switch the parameterization to match the JOBS II data set and Equation 2.1. Also, the only unknowns in
the likelihood are the component means; all other parameters are assumed known and fixed at the correct values. Finally, we
calculate the MLE directly, rather than via EM (Dempster et al., 1977).
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Figure 1: Distribution of the MLE for ∆ for 1000 fake data sets generated from a two-component ho-
moskedastic Normal mixture model with N “ 132, π “ 0.55, and σ “ 1.

∆n “ µ0,n ´ µ1,n. (3.1)

We prove that if ∆n “ opn´1{4q in a class of models similar to those considered by Chen (1995), then

|p∆n ´∆n| “ Oppn
´1{4q and |p∆n ´∆n| ‰ oppn

´1{4q, with p∆n denoting the maximum-likelihood estimator

of ∆n. That is, if the separation of µ1,n and µ0,n disappears quickly enough, the maximum-likelihood

estimator’s parametric rate of convergence is sacrificed.

Theorem 3.1. Let Yi,n for i P t1, . . . , nu and n P N be drawn independently from the model

Yi,n „ πN
`

´∆n, σ
2
˘

` p1´ πqN
ˆ

π

1´ π
∆n, σ

2

˙

, (3.2)

with ∆n “ opn´1{4q. Then |p∆n ´∆n| “ Oppn
´1{4q and |p∆n ´∆n| ‰ oppn

´1{4q.

The proof of this result, which follows Chen (1995), is given in the Appendix. The key theoretical aspect

of the above model is that the Fisher Information of ∆n in each yi,n, Ip∆nq, is 0 when ∆n “ 0. Thus,

the Fisher Information of ∆n contained in the entire sample ty1,n, . . . , yn,nu is nIp∆nq, and there are two

competing limits: nÑ8 and Ip∆nq Ñ 0.

3.2 Pathologies of the MLE

The above result shows that the usual parametric asymptotic rate of convergence of the MLE can break down

in a certain class of models. Recognizing that we should not necessarily expect parametric convergence, we

now turn to characterizing the finite sample behavior of the MLE. The three-part sampling distribution in

Figure 1 is a good illustration of the key inferential issues we face. We refer to the large point mass at zero,

such as in Figure 1a, as pile up. For these simulated data sets, p∆mle « 0 even though ∆ ‰ 0. This generally

occurs when the likelihood surface is unimodal, as shown in Figure 2a. We refer to those MLEs with an

8
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Figure 2: Examples of unimodal and bimodal log-likelihoods generated from the two-component Gaussian
mixture

opposite sign from the truth as a sign error, in which sgnpp∆mleq ‰ sgnp∆q. For this problem, the mixture

likelihood surface is generally bimodal (see Figure 2b). A sign error occurs when the global MLE, obtained

by choosing the mode with the higher likelihood (McLachlan and Peel, 2004), chooses the wrong mode.

These pathologies are present across extensive simulations. Specifically, we set parameters to π P

t0.2, 0.325, 0.45u, for N P t50, 100, 200, 400, 500, 1000, 2000, 5000u and ∆ P t0.25, 0.5, 0.75, 1u. For each set

of parameters, we simulate 1000 fake data sets from the Gaussian mixture model in Equation 1.1. For each

data set, we then calculate the MLE, compute standard errors via the Hessian of the log-likelihood evaluated

at the MLE (i.e., the observed Fisher information), and generate nominal confidence intervals via the point

estimate ˘1.96 standard errors. We then calculate the average bias and coverage rates at each setting of the

parameter values, as well as the empirical probabilities of pile up and sign error.

Figure 3 shows the empirical bias and coverage, respectively, for p∆mle. The left column shows simulation

results when the true ∆ “ 0.25 and the right column shows results when the true ∆ “ 0.75. For both

cases, π “ 0.325 and σ2 “ 1. The first row shows the average estimate for p∆mle across simulations, which is

essentially 0 when ∆ “ 0.25 and slowly climbs from 0 when ∆ “ 0.75. The second row shows the empirical

coverage of the 95% confidence intervals for ∆. Strikingly, this coverage deteriorates as ∆ increases, although

it begins to climb again for ∆ “ 0.75. The third row shows the empirical probability of each pathology (where

“correct” corresponds to an MLE that is neither pile up nor the wrong sign). For ∆ “ 0.25, the probability

of pile up is shockingly high, and is the likeliest outcome for sample sizes for sample sizes less than N “ 200.

Even with sample sizes as high as N “ 5000, the estimated sign is as likely to be negative as positive. These

pathologies help to explain the seemingly strange pattern with bias and coverage. For ∆ “ 0.25, for example,

coverage gets worse because confidence intervals get tighter around a point estimate that has the wrong sign.
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Finally, while we focus on the behavior of the MLE itself, many factors contribute to poor coverage. Fol-

lowing Rubin and Thayer (1983) and Frumento et al. (2016), we note that in many settings the log-likelihood

at the MLE is not well-approximated by a quadratic, which partly explains the simulation results (see also

McLachlan and Peel, 2004). In the supplementary materials, we also show that bootstrap-based standard

errors do not resolve these issues.
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Figure 3: Simulation results for the MLE of ∆. The dotted lines represent the true values.

4 Method of Moments

4.1 Point estimation and confidence intervals

To understand this poor behavior for the MLE, we would ideally investigate the likelihood equations directly.

Unfortunately, the likelihood equations are intractable and the mixture likelihood surface itself is notoriously

complicated (Lindsay, 1983). We therefore develop a simple method of moments estimate, p∆mom, that

captures the essential features of the MLE in the settings we consider.10 Our key point—which has been made

repeatedly before (e.g., Kiefer, 1978)—is that p∆mle and p∆mom essentially use the same sample information in

practice. While the MLE incorporates an infinite number of moments and is an efficient estimator (Redner

10Note that moment estimators for finite mixture models can be quite complex—the goal here is to build intuition rather
than to improve on existing moment estimators. See Furman and Lindsay (1994a,b). Titterington (2004) offers a review.
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and Walker, 1984), in practice there is negligible information in the higher order moments, at least beyond

the third or fourth moments. As a result, there is little reason to expect the MLE to fare better than the

MOM estimate in settings where the latter breaks down. Similarly, by characterizing the MOM estimate,

we can obtain good heuristic approximations of the MLE’s behavior.

To define p∆mom, we first let κk be the kth cumulant of the observed mixture distribution (Tan and

Chang, 1972). Then the first two mixture cumulants, the mean and variance, are:

κ1 “ πµ0 ` p1´ πqµ1,

κ2 “ σ2 ` πp1´ πqpµ1 ´ µ0q
2,

where σ2 is the within-component variance and πp1 ´ πqpµ1 ´ µ0q
2 is the between-component variance.

Substituting in ∆ ” µ1 ´ µ0 yields

κ1 “ µ1 ` π∆, (4.1)

κ2 “ σ2 ` πp1´ πq∆2. (4.2)

Since π and σ2 are known, we can immediately estimate ∆2 using the observed mixture variance:

x∆2 “
pκ2 ´ σ

2

πp1´ πq
.

In words, x∆2 is the scaled difference between the total mixture variance and the within-component variance.

The estimate of pκ2 is the usual unbiased estimate of the sample variance. Note that we do not constrain the

numerator to be non-negative in order to highlight the pathological issues that arise in the MLE.

If we know the sign of ∆, then we take the square root to obtain a moment estimate for ∆. However, if

the sign of ∆ is unknown, we must estimate it. We therefore need one more moment equation. A natural

choice is the third cumulant of the observed mixture:

κ3 “ πp1´ πqp1´ 2πq∆3. (4.3)

Since π is assumed to be known, {sgnp∆q “ sgnppκ3q. We do not consider the knife-edge case of π “ 1{2, in

which there is no information in the data about the ordering of the components.

This yields the following moment estimator for ∆, with π ă 1
2 :

p∆mom “ sgnppκ3q

d

pκ2 ´ σ2

πp1´ πq
. (4.4)

Note that the third moment contains some information about the magnitude of ∆, in addition to information

about its sign. Therefore, in this simple case, ∆ is over-identified and we can use the Generalized Method of

Moments (GMM; Hansen, 1982) or the Moment Generating Function method of Quandt and Ramsey (1978)

to combine the moment equations. However, we use this simple estimate to approximate the MLE, and so

we do not need to focus on these more complex approaches.

Accounting for uncertainty in p∆mom is conceptually straightforward. In the case of the two-component
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Gaussian mixture model, Tan and Chang (1972) derive the sampling distribution of the first three cumulants

up to Op1{n2q:

¨

˚

˝

pκ1

pκ2

pκ3

˛

‹

‚

„ N

¨

˚

˝

¨

˚

˝

κ1

κ2

κ3

˛

‹

‚

,
1

n

¨

˚

˝

κ2 κ3 cπ13∆4

cπ22∆4 ` 2κ2
2 cπ32∆5 ` 6κ2κ3

cπ33a∆6 ` cπ33bκ2∆4 ` 6κ3
2

˛

‹

‚

˛

‹

‚

, (4.5)

where cπrc are constants that depend on π.11 We can then apply the Delta method to Equation 4.4 to obtain

approximate confidence intervals for p∆mom.

In practice, however, p∆mom is not a smooth function of pκ2 and pκ3. To make matters worse, estimates

of higher order moments are extremely noisy: the variance of the sample variance depends on the fourth

moment, and the variance of the sample skewness depends on the sixth moment. As a result, even if the true

value of ∆ is far from zero, due to sampling variability, the observed sample moments could yield estimates

at or near critical points in the mapping from the sample moments to p∆mom.

We can now immediately see our two pathologies:

• Pile up. If the estimated overall variance is less than the assumed within-group variance, pκ2 ă σ2, then
x∆2 ă 0 and p∆mom is undefined. Heuristically, the MLE in these settings is p∆mle “ 0 and generally

corresponds to a unimodal likelihood. In other words, the MLE implicitly restricts the estimate of ∆2

to be nonnegative.

• Sign error. If the estimated sign of the skewness does not equal the true sign of the skewness, sgnppκ3q ‰

sgnpκ3q, then sgn
´

p∆mom
¯

‰ sgnp∆q. Heuristically, this corresponds to the case when the higher mode

in a bimodal likelihood does not, in fact, correspond to the global mode.

4.2 Assessing pathologies in practice

Using the sampling distributions from Equation 4.5, we can calculate the approximate probability of each

pathology occurring for any given ∆, π, n, and σ2. For the case where ∆ ą 0 and π ă 1
2 , the marginal

probabilities of the two pathologies are:

Pppile upq “ Pppκ2 ă σ2q « Φ

˜

´
?
nπp1´ πq∆2

a

cπ∆4 ` 2κ2
2

¸

, (4.6)

Ppsign errorq “ Ppsgnppκ3q ‰ sgnpκ3qq « Φ

˜

´
?
nπp1´ πqp1´ 2πq∆2

a

c2π∆6 ` c2πκ2∆4 ` 6κ2
2

¸

. (4.7)

We use simulation to assess the accuracy of these approximations; see the supplementary materials for

additional information. For pile up, the moment approximations are uniformly excellent, with over 95%

agreement across simulation values. For sign error, the approximations are quite good for moderate π, but

are less informative with smaller N and more extreme π.

Figure F.7a shows the joint approximate probabilities of pile up and sign error, calculated via the joint

distribution from Equation 4.5, with π “ 0.325, ∆ “ 0.25, and varying sample size. Unsurprisingly, as the

11 cπ13 “ 1´ 6πp1´ πq, cπ22 “ πp1´ πqp1´ 6πp1´ πqq, cπ32 “ πp1´ πqp1´ 2πqp1´ 12πp1´ πqq, cπ33a “ πp1´ πqp1´ 30πp1´
πq ` 120π2p1´ πq2q ` 9π2p1´ πq2p1´ 2πq2, cπ33b “ 9πp1´ πqp1´ 6πp1´ πqq.
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sample size and ∆ increase, the chance of a pathological result indeed decreases. However, these pathologies

are hardly “small sample” issues—for ∆ “ 0.25, which would be quite large in many social science appli-

cations, pile up remains the likeliest outcome even with sample sizes in the thousands. For ∆ “ 0.75 (not

shown) there is only a 70% chance of a correct estimate for N “ 2000. Figure F.7b shows results for a

moderate sample size of N “ 200. In this case, if the mixture means are 0.5 standard deviations apart, a

given estimate is just as likely to be a pile up, have the wrong sign, or be correct. These formulas can be

used in a manner analogous to design or power calculations, as researchers typically know N and π prior to

estimating a mixture model. Graphs such as Figure F.7b, can immediately show whether pile up and sign

error are meaningful issues for plausible values of ∆.
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Figure 4: Normal approximations for the probability of each pathology for given sample size and separation
of means. π is assumed to be 0.325. The “correct” outcome is defined as one minus the probability of pile
up or sign error.

Finally, in smaller samples, we might be concerned about the Normal approximation to the sampling

distributions for pκ2 and pκ3. In this case, it is convenient to use a case-resampling bootstrap to approximate

these distributions. While this does not yield analytical formulas for the probability of each pathology, it

is straightforward to estimate both Ptpκ2 ă σ2u and Ptpκ3 ă 0u, without needing to rely on an asymptotic

approximation. Note that this is a standard application of the case-resampling bootstrap for which all the

usual guarantees hold—rather than using the bootstrap for uncertainty on mixture component means.

4.3 Bias due to pile up

If x∆2 ă 0, it is clear that p∆mom is undefined. Less obvious—but no less important—is that p∆mom is severely

biased if x∆2 ą 0 but the probability of pile up is large. Intuitively, this occurs because we are implicitly

conditioning on the fact that x∆2 ą 0 when p∆mom is well-defined; we are therefore estimating the mean of a
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Figure 5: Mean for p∆mle (simulated) and p∆mom (calculated) when pκ2 ą σ2. The true value is ∆ “ 0.25

truncated Normal. We see the same behavior with the MLE; the mode of the bimodal likelihood is biased

away from zero because we are implicitly conditioning on the fact that the observed likelihood surface is

indeed bimodal rather than unimodal.

Figure 5 shows the bias of p∆mle in simulation studies for which there are no pathologies and for which

the true ∆ “ 0.25 and π “ 0.325. The bias is substantial throughout, and for sample sizes N ă 1000, the

bias is larger in magnitude than ∆. As with the overall MLE, we can characterize this behavior using the

MOM estimate. In particular, we use LOTUS and numerical integration to obtain the expected value of the

truncated distribution, Erp∆mom | pκ2 ą σ2s. As shown in Figure 5, this is a good approximation to the bias

calculated via simulation.

It is useful to note that the bias of the MLE in this setting is closely related to the bias induced by

introducing identifiability constraints, such as ∆ ą 0 (Jasra et al., 2005; Frühwirth-Schnatter, 2006). In

both cases, the MLE is the maximum of a truncated likelihood surface, truncated at the line ∆ “ 0.

5 Confidence sets via inverting tests

Given the poor performance of the MLE, we are interested in methods that perform well even when ∆

is small. Based on the large literature on weak identification in other settings, we presume that many

such methods are possible. As a starting point, we suggest an approach to construct confidence intervals
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based on inverting a sequence of tests. This approach is widely used in other weak identification settings,

namely weak instruments (e.g., Staiger and Stock, 1997; Kang et al., 2015) and the unit root moving average

problem (Mikusheva, 2007). It is also closely related to the method of constructing confidence intervals for

causal effects by inverting a sequence of Fisher Randomization Tests (Imbens and Rubin, 2015).

At the same time, this approach has its drawbacks. First, while test inversion yields confidence sets with

good coverage properties, it does not necessarily yield good point estimates. In particular, it is possible

to construct a Hodges-Lehmann-style estimator via the point on the grid with the highest p-value (Hodges

and Lehmann, 1963). But since pile up and sign error remain issues, any point estimator in this case

should be interpreted with caution. Second, the coverage guarantees hold only when the model is correctly

specified; under even moderate mis-specification, the resulting estimator can cease to exist (Gelman, 2011).

In the supplementary material, we explore the effects of mis-specification on the resulting confidence sets.

Unsurprisingly, we find that the approach works well under mild mis-specification (i.e., generating data via

t50 rather than Normal) but otherwise performs poorly. Note that the MLE performs poorly even when the

model is correctly specified. Alternatively, researchers uninterested in test inversion for confidence intervals

might nonetheless be interested in using this approach to assess model fit. If the proposed procedure rejects

everywhere, this is evidence that the Normal mixture model is a poor fit.

We discuss two basic approaches here. Our first approach is a version of the grid bootstrap of An-

drews (1993) and Hansen (1999), which generates Monte Carlo p-values by simulating fake data sets from

the null hypothesis. While the grid bootstrap is conceptually straightforward and enjoys theoretical guar-

antees (Mikusheva, 2007), it is also computationally intensive. Our second approach is therefore a fast

approximation that directly uses the Normal sampling distribution in Equation 4.5 to derive a χ2 test at

each grid point. To demonstrate these methods, we first outline inference for ∆ alone and then extend this

to inference for the component-specific means, µ0 and µ1. Since the additional details are not central to our

argument, we discuss inference for the broader principal stratification model in the supplementary materials.

5.1 Overview of grid bootstrap

To conduct a grid bootstrap, we first need a grid. Define ∆ “ t∆0,∆1, . . . ,∆nu with ∆i ą ∆j for i ą j.

The immediate goal is then to obtain a p-value for the following null hypotheses for each value ∆j P ∆:

H0 : ∆ “ ∆j vs. H1 : ∆ ‰ ∆j . (5.1)

For convenience we first center the data (we return to this in the next section). Next, we need a test statistic,

tpy,∆jq, that is a function of the observed (or simulated) data and the value of ∆ under the null hypothesis,

∆ “ ∆j . For a given N , and initially assuming π and σ2 are known, we then obtain exact p-values through

simulation with the following procedure:

• For each ∆j P ∆

– Calculate the observed test statistic, tobs
j “ tpyobs,∆jq.

– Generate B data sets of size N from the model

y˚j
iid
„ πN

ˆ

∆j

2
, σ2

˙

` p1´ πqN
ˆ

´
∆j

2
, σ2

˙

.
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– For each simulated y˚j , compute t˚j “ tpy˚j ,∆jq.

– Calculate the empirical p-value of tobs
j as a function of the null distribution, t˚j .

• Calculate the confidence set, CSαp∆q “ t∆j : pp∆jq ą 1´αu for a specified significance level α, where

pp∆jq is the empirical p-value of p∆mle assuming that ∆ “ ∆j .

Note that the resulting confidence set might not be continuous, which could occur if the sampling distribution

is strongly bimodal.

5.2 Constructing a test statistic

So long as the model is correctly specified, this approach yields an exact p-value for any valid test statistic,

up to Monte Carlo error (Mikusheva, 2007). We propose a test statistic based on the joint distribution of

pκ2 and pκ3.12 Equation 4.5 suggests a natural combination of the estimated cumulants:

tκpy,∆jq “ pd2, d3qVarpκ2, κ3q
´1pd2, d3q

T , (5.2)

where dk “ pκk ´ κk, and we use the assumed null of ∆ “ ∆j to obtain pκ2, κ3q and Varpκ2, κ3q. In practice,

the Normal approximation in Equation 4.5 is excellent, even for modest sample sizes (say N ą 100). This

implies:

tκpy,∆jq
a
„ χ2

2.

We can therefore obtain a p-value via a Wald test at each grid point, which is fast computationally.

Finally, to use these approaches to estimate component means, we need to (1) expand the grid, and (2)

expand the test statistic. A natural choice for a grid of points is the two-dimensional grid over µ0 and µ1.

To expand the test statistic, we directly use the first three cumulants from Equation 4.5 to obtain a joint

test statistic as in Equation 5.2:

tκpy,∆jq “ pd1, d2, d3qVarpκ1, κ2, κ3q
´1pd1, d2, d3q

T „ χ2
3. (5.3)

As above, we can obtain p-values via the grid bootstrap rather than via the χ2 distribution. Figure 6

shows the distribution of p-values for three different examples from the same data generating process, with

N “ 1000, π “ 0.325, σ2 “ 1, µ0 “ `
1
8 , µ1 “ ´

1
8 .13

Figure A.1 shows the 95% coverage for the confidence sets obtained through this fast approximation. As

expected, the coverage is essentially exact. In particular, 95% coverage for this procedure is far better than

the corresponding coverage based on the MLE.

6 Application to JOBS II

We now return to our example of JOBS II. As described in Section 2, we focus on the subset of N1 “ 278

randomly assigned to treatment and N0 “ 132 randomly assigned to control. In the treatment group,

12There are many possible alternatives. For example, Frumento et al. (2016) suggest test statistics based on scaled log-
likelihood ratios. Another option is to use univariate test statistics based on pκ2 or pκ3.

13Note that the χ2 distribution no longer holds when µ0 “ µ1. While we can use a univariate Normal distribution to obtain
a valid p-value in this case, this additional complication is generally unnecessary in practice.
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Figure 6: Three examples of the distribution of Wald test p-values from Equation 5.3. Simulated data are
from Equation 1.1 with N “ 1000, π “ 0.325, σ2 “ 1, µ0 “

1
8 , µ1 “ ´

1
8 . The dark line shows the cutoff for

p “ 0.05. The red dot shows the true value. Note that the Wald test is undefined when µ0 “ µ1.

Table 1: Summary statistics for observed groups in JOBS II

Z Dobs Observed Mean Observed SD Possible Principal Strata
1 1 -0.16 1.03 Compliers
1 0 0.05 0.96 Never Takers
0 0 0.14 0.98 Compliers and Never Takers

1´π “ 45 percent of individuals do not enroll in the program. The primary outcome is log depression score

six months after randomization. For convenience, we standardize the outcome by subtracting off the grand

mean and dividing by pσ1 “
a

πpσ2
n1 ` p1´ πqpσ

2
c1, the estimated within-component standard deviation under

treatment. Table 1 shows summary statistics for the three observed groups for the standardized outcome.

Based on the group means, it is clear that workers who are observed to enroll in the program have lower

depression, on average, than those who do not. Note that the point estimates for pσc1 and pσn1 are quite close,

which is consistent with our equal variance assumption (we relax this assumption below).

To assess the performance of the MLE in this setting, we simulate data with the same parameters as in

the JOBS II example, N “ 132, π “ 0.55, and σ2 “ 1. Figures 7a and 7b show the bias and 95% coverage for

the MLE for these parameters and assumed values of ∆. Figure 7c shows the probability of each pathology

for these parameters. Note that that the results are unchanged if we consider negative values of ∆.

The pattern is striking. For values of ∆ ă 0.5, the most likely p∆mle is 0. That is, the likeliest outcome

is a unimodal likelihood with the mode centered at ∆ “ 0. Unsurprisingly, the MLE has poor bias and

coverage properties for reasonable values of ∆. In particular, we see that the coverage of p∆mle decreases as

the assumed value of ∆ increases from 0.1 to 2.0. This is due to the increasing probability of a sign error

occurring and the poor conditional coverage of p∆mle conditional on making a sign error. These suggest that,

at best, we should interpret the MLE in this example with caution.

Figure 8 shows the outcome distribution and bootstrap sampling distributions for pκ2 and pκ3. The observed

standard deviation for the control group is pκ2 “ 0.98, and, based on the bootstrap, Pppκ2 ă 1q “ 0.65. This

suggests that there is little information in the second moment about the magnitude of ∆. The observed

third sample moment for the control group is pκ3 “ 0.17, with a bootstrap probability Pppκ3 ă 0q “ 0.12.

This suggests that the outcome distribution is sufficiently skewed such that the discontinuity, and hence the
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Figure 7: Simulation results for the bias and coverage of the MLE for N “ 132, and π “ 0.55, σ2 “ 1, and
assumed values of ∆. The thick black line shows the overall bias and coverage. The thinner lines show the
bias and coverage results conditional on pathology.

a sign error, is not a major concern.

We fit a simple Normal mixture model to the data from the control group and find p∆mle “ 0.00, which is

consistent with the univariate results in Mattei et al. (2013).14 We also estimate a 95% confidence interval of

r´0.9, 0.9s. Given the evidence of pile up, our analysis suggests that we should interpret this point estimate

with caution. Figure 9a shows the p-values from the grid bootstrap and from the Wald tests for ∆, which are

nearly identical to each other. Like the MLE, this distribution is centered at ∆ “ 0, with a 95% confidence

set of r´1.27, 1.27s, roughly 40% wider than the corresponding nominal confidence interval. Figure 9b shows

the corresponding confidence set for both µc0 and µn0, which is also centered at µc0 “ µn0.

Finally, we can obtain confidence sets for ITTc and ITTn. First, the 97.5% confidence intervals for the

outcomes under treatment are CS0.025pµc1q “ r´0.35, 0.03s and CS0.025pµn1q “ r´0.14, 0.24s. Therefore, the

confidence sets for the treatment effects are CS0.05pITTcq “ r´1.21, 0.61s and CS0.05pITTnq “ r´1.14, 0.95s.

These are considerably wider than the corresponding MLE confidence intervals, CSmle
0.05pITTcq “ r´0.88, 0.27s

and CSmle
0.05pITTnq “ r´0.59, 0.42s.

7 Extension: Unknown variance

We now return to the assumption that the component variances are equal, which might be unrealistic in

practice (e.g., Gallop et al., 2009). There are two ways to relax this assumption. Consider the general

two-component Gaussian mixture model:

Yi
iid
„ πN pµ0, σ

2
0q ` p1´ πqN pµ1, σ

2
1q.

14We can see this using the summary statistics in Mattei et al. (2013). For the univariate model without the exclusion
restriction, their Table 1 gives point estimates pµc1 “ 1.96 and pµn1 “ 2.08 on the depression scale. The treatment effect point

estimates are zITTc “ ´0.206 and zITTn “ ´0.084, which imply pµc0 “ 1.96 ` 0.206 “ 2.166 and pµn0 “ 2.08 ` 0.084 “ 2.164.
Therefore, p∆ « 0. By contrast, the implied estimate for ∆ from their bivariate model is p∆ “ 0.261, which is roughly three-
quarters of a standard deviation on the depression scale. Finally, note that the model in Mattei et al. (2013) assumes unknown,
unequal variances.
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Figure 8: Overview of sample moments for individuals assigned to the control group in JOBS II.
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Figure 10: Distribution of p∆mle for ∆ “ 0.25, N “ 5000, π “ 0.325, and σ2 “ 1. The red vertical line
indicates the true value.

In the equal-variance case, we assume that σ2 “ σ2
0 “ σ2

1 and that σ2 is unknown. In the unequal-variance

case, we assume that σ2
0 and σ2

1 are both unknown and are not constrained to be equal.

Simulation studies show that the performance of the MLE with unknown component variance continues

to be poor. Interestingly, the sampling distribution of the MLE for ∆ shows a different pattern from the

known variance case; see Figure 10 for an example with ∆ “ 0.25 and N “ 5000. For the MLE with

unknown, equal variance, there is no pile up. However, the bias is much more substantial than for the

case with known, equal variance—the two modes are centered at around ˘0.75, roughly three times larger

than the truth. For the MLE with unknown, different variances, the distribution of the MLE has a distinct

trimodal distribution. The middle mode is centered at zero; the other two modes are similarly biased as in

the case with unknown, equal variance. This pattern appears to persist across a broad range of parameter

values.

We can gain intuition for the MLE with unknown, equal variance by deriving the method of moments

analog. With known σ, we use κ2 to estimate the magnitude of ∆ and use κ3 to estimate the sign of ∆. With

unknown σ, we use κ2 to estimate the variance itself and use κ3 to estimate both the sign and magnitude of

∆:

p∆mom,κ3 “ sgn ppκ3q

ˆ

|pκ3|

πp1´ πqp1´ 2πq

˙1{3

.

Since this estimator is well-defined for all values of pκ3, pile up is not a concern. However, the absolute value

is still a discontinuity in the mapping from the sample distribution to the statistic. Therefore, we implicitly

condition on pκ3 ą 0, which leads to bias, since we are taking the mean of a truncated distribution.

Figure 11 shows the bias from the simulation studies for p∆mle for cases with known and unknown σ,

and with ∆ “ 0.25 and π “ 0.325. The bias with unknown variance is much more substantial than with

known variance. As for the case with known variance, we can use LOTUS and numerical integration to
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obtain the expected value of the truncated distribution, Erp∆mom,κ3 | pκ3 ą 0s. This also appears to be a

good approximation to the bias calculated via simulation.

Finally, we do not discuss the moment estimator for unknown, unequal variance. This uses the first four

cumulants and does not have a form that gives any useful insight.

8 Discussion

We find that maximum likelihood estimates for component-specific means in finite mixtures can yield patho-

logical results in a range of practical settings. These pathologies are particularly relevant for estimating causal

effects in principal stratification models, which are often based on estimates of component means. Echoing

previous work (e.g., Griffin et al., 2008), we therefore caution researchers on the use and interpretation of

model-based estimates of component-specific parameters.

First, we suggest that, whenever possible, researchers consider alternative approaches to inference that

do not rely on model-based estimation. In the context of principal stratification, these alternatives often

rely on constant treatment effect assumptions or on conditional independence across multiple outcomes (e.g.,

Jo, 2002; Jo and Stuart, 2009; Ding et al., 2011). When such restrictions are not possible, we follow Grilli

and Mealli (2008) and recommend that researchers first compute nonparametric bounds (see also Zhang and

Rubin, 2003; Lee, 2009).

Second, researchers might nonetheless be interested in leveraging parametric assumptions for estimation.

In this case, we suggest that researchers use our results to assess the probability of pathological results for

different parameter values, such as in Figure 4. Analogous to design analysis, these calculations can provide

practical guidance on whether mixture modeling will yield useful inference. In addition, confidence sets

generated via test inversion are a meaningful check on the model-based results.

More optimistically, we agree that incorporating multiple outcomes, such as in Mattei et al. (2013),
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can greatly improve inference; intuitively, the distance between components will be greater in multivariate

space, in effect, giving larger ∆ and easier separation (see also Mercatanti et al., 2015). Alternatively, prior

information (e.g., Hirano et al., 2000; Stein, 2013) can improve inference, even if problems with the likelihood

remain. Finally, extensive model checking (e.g., Zhang et al., 2009; Frumento et al., 2012) can increase the

credibility of inference with finite mixtures.

Although we do not address them in depth here, covariates play a very central role in principal strat-

ification in practice (e.g., Jo, 2002; Zhang et al., 2009; Zigler and Belin, 2011; Ding et al., 2011). In the

supplementary materials, we briefly explore whether covariates can indeed improve inference in the settings

we consider here. Perhaps surprisingly, our preliminary results suggest that covariates can actually make

pathological results worse without additional restrictions. Thus, merely adding covariates to the model is not

enough—the covariates must also be coupled with additional modeling assumptions. This is an important

direction for future research.

Going forward, we hope that the approach outlined here can serve as a useful template for studying the

behavior of mixture model estimates in finite samples. Moreover, we considered only a very simple case

in this paper; in the future, we plan to assess inference for much richer models, especially those common

in principal stratification. Finally, we are actively exploring alternative estimation strategies beyond test

inversion, particularly those that more directly leverage Bayesian methods and that can give sensible point

estimates. In the end, inference in the Twilight Zone is possible. But we must proceed with caution.
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A Appendix

A.1 Coverage for confidence sets via test inversion

Figure A.1 shows the coverage probabilities for 95% confidence sets based on the test inversion algorithm
described in Section 5. Note that the coverage of the grid bootstrap intervals are practically exact and
dramatically outperform the corresponding “naive” confidence intervals for the MLE.
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Figure A.1: Coverage for 95% confidence sets based on the test inversion algorithm described in Section 5.
The results for the MLE are for the standard finite mixtures estimator, as in Figure 3.

A.2 Asymptotic Results

We prove Theorem 3.1. Our proof relies on a Taylor expansion similar to that used by Chen in the proof of
Proposition 1 of Chen (1995). For a longer, more detailed proof see the Supplementary Materials.

Proof. We consider the case in which σ2 “ 1. All results derived below will be applicable to the homoeskedas-
tic case by scaling the Yi,n by σ. Our proof relies on Taylor expansions of the sequence of log-likelihoods

lnp∆nq “ ppY1,n, . . . , Yn,n | ∆nq.
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Let c “ π{p1´ πq and fpy, µq be the Gaussian kernel with mean µ and variance 1 evaluated at y. The first
derivative of the log-likelihood for ∆n is

l1np∆nq “

n
ÿ

i“1

´πf 1pyi,n,´∆q ` cp1´ πqf 1pyi,n, c∆q

πfpyi,n,´∆q ` p1´ πqfpc∆q
. (A.1)

Note that the requirement on c for l1np0q “ 0 is c “ π
1´π . Thus, l1np0q “ 0 regardless of the observed data.

The second order derivative of the log-likelihood is

l2np∆nq “

n
ÿ

i“1

πf2pyi,n,´∆nq ` c
2p1´ πqf2pyi,n, c∆nq

πfpyi,n,´∆nq ` p1´ πqfpc∆nq
´

ˆ

´πf 1pyi,n,´∆nq ` cp1´ πqf
1pyi,n, c∆nq

πfpyi,n,´∆nq ` p1´ πqfpc∆nq

˙2

.

(A.2)
The second term in Equation G.7 vanishes when ∆n “ 0, leaving

l2np0q “
pπ ` c2p1´ πqqf2pyi,n, 0q

fpyi,n, 0q
, (A.3)

which has expectation 0 when ∆n “ 0. Thus, the Fisher Information of ∆n when ∆n “ 0 is 0. To be concise,
we state the third and fourth derivatives of the likelihood evaluated at ∆n “ 0,

l3n p0q “
n
ÿ

i“1

p´π ` c3p1´ πqqf3pyi,n, 0q

fpyi,n, 0q
(A.4)

and

lp4qn p0q “
n
ÿ

i“1

pπ ` c4p1´ πqqf p4qpyi,n, 0q

fpyi,n, 0q
´ 3pπ ` c2p1´ πqq2

ˆ

f2pyi,n, 0q

fpyi,n, 0q

˙2

. (A.5)

We define Ai,n, Bi,n, and Ci,n analogously to Chen (1995):

Ai,n “
f2pYi,n, 0q

fpYi,n, 0q
, Bi,n “

f p3qpYi,n, 0q

fpYi,n, 0q
, Ci,n “

f p4qpYi,n, 0q

fpYi,n, 0q
. (A.6)

We compute these terms explicitly for the Normal kernel with variance 1:

Ai,n “ Y 2
i,n ´ 1,

Bi,n “ ´3Yi,n ` Y
3
i,n,

Ci,n “ 3´ 6Y 2
i,n ` Y

4
i,n.

Using the moments of Yi,n and the fact that Y1,n, . . . , Yn,n are i.i.d.we have that

n
ÿ

i“1

Ai,n “ Op

´

maxtn∆2
n, n

1{2u

¯

,

n
ÿ

i“1

Bi,n “ Op

´

maxtn∆3
n, n

1{2u

¯

,

n
ÿ

i“1

Ci,n “ Op

´

maxtn∆4
n, n

1{2u

¯

.
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We can now Taylor expand lnp∆q:

lnp∆nq “ lnp0q ` a∆2
n

n
ÿ

i“1

Ai,n ` b∆
3
n

n
ÿ

i“1

Bi,n ` c∆
4
n

n
ÿ

i“1

A2
i,n `Oppn

1{2∆4
nq, (A.7)

where a, b, and c are constants. Taking the derivative and removing the root at 0,15 we arrive at

p∆n “

»

—

–

´3b
n
ÿ

i“1

Bi,n ˘

¨

˝

˜

3b
n
ÿ

i“1

Bi

¸2

´ 32ac
n
ÿ

i“1

Ai,n

n
ÿ

i“1

A2
i,n

˛

‚

1{2
fi

ffi

fl

«

8c
n
ÿ

i“1

A2
i,n

ff´1

p1` opp1qq “ Oppn
´1{4q,

(A.8)

since
řn
i“1A

2
i,n “ Oppnq. Further, for p∆n to be oppn

´1{4q,
řn
i“1Ai,n “ oppn

1{2q, which is impossible as

A1,n, . . . , An,n are i.i.d. with non-zero variance. It follows that if ∆n “ opn´1{4q we have

ˇ

ˇ

ˇ

p∆n ´∆n

ˇ

ˇ

ˇ
“ Oppn

´1{4q

and
ˇ

ˇ

ˇ

p∆n ´∆n

ˇ

ˇ

ˇ
‰ oppn

´1{4q.

15This root has probability ă 1 of being a maximum, a result that comes from its dependence on the sign of
řn
i“1 Ai,n.
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Supplemental Materials

B Validating the Normal approximations

We present figures testing the correspondence of the method of moment indicators to their corresponding
pathologies. Figure B.2 compares the incidence of pile up and κ̂2 ă σ2 for a range of values of π,∆, and N .
The blue line indicates the probability the method of moments estimator indicator of pile up (1tκ̂2 ă σ2u)
agrees with whether or not pile up was observed in simulation. The results are averaged over 1000 simulated
data sets. Unsurprisingly, the correspondence improves as N increases and is worst when π “ 0.1, the case
in which the mixture is its most asymmetric. Overall, however, the method of moments indicator provides
an excellent estimator for whether pile up has occured in the sample.

Figure B.3 shows the corresponding plots for the method of moments indicator of sign error (1tsgnp∆q ‰
sgnpκ̂3qu). Here, due to the extra noise in κ3, the correspondence is much less sharp. The discrepancies
are most noticeable when π is close to 0 and ∆ is small. However, as we see in the main text, we can still
leverage the joint distribution of pκ̂2, κ̂3q to derive confidence sets for ∆ in practice.

C Additional discussion for principal stratification models

C.1 Incorporating covariates

In practice, causal inference researchers typically have access to a vector of pre-treatment covariates. Zhang
et al. (2009), for example, argue that covariates play two main roles in principal stratification. First,
they “generally improve the precision of parameter estimates because they improve the prediction of the
missing potential outcomes.” That is, covariates are predictive of Y , U , or both. Second, “covariates
generally make assumptions more plausible, because they are conditional rather than marginal.” That is,
the assumption that component densities follow a Normal distribution is often more reasonable conditional
on many covariates than unconditionally.16

We agree that the relevant modeling assumptions are often more reasonable conditionally. However, when
components are only weakly separated, we find that incorporating covariates in an unrestricted way not only
fails to improve precision in general, but actually increases the probability of obtaining a pathological result.
Arguably, covariates are most useful in this setting when combined with conditional-independence-type
assumptions, as we discuss below (Jo, 2002; Mealli and Rubin, 2002).

C.1.1 Covariates without restrictions

To illustrate the key concepts, we explore the case with a single binary covariate, X. As in the no-covariates
case, the immediate goal is to estimate the overall difference in means, ∆. The idea is to improve precision
by estimating the component means conditional on X, ∆x, and then combining. Without restrictions, this
simply doubles the number of equations and unknowns we must estimate.

Yi | Xi “ 1
iid
„ π1N pµ0|1, σ

2q ` p1´ π1qN pµ1|1, σ
2q

Yi | Xi “ 0
iid
„ π0N pµ0|0, σ

2q ` p1´ π0qN pµ1|0, σ
2q

16There have been extensive discussions on the use of covariates in principal stratification models. See, for example, Little
and Yau (1998), Hirano et al. (2000), Jo (2002); Jo and Stuart (2009), Zhang et al. (2009), Ding et al. (2011), Richardson et al.
(2011), and Zigler and Belin (2011).
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Figure B.2: Probability that the method of moments indicator of pile up (1tκ̂2 ă σ2u) agrees with whether
or not pile up was observed in simulation. The dotted red line indicates 1 on the y-axis, while the blue line
indicates the average agreement probability over 1000 simulated data sets.
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Figure B.3: Probability that the method of moments indicator of wrong sign (1tsgnpκ̂3q ‰ sgnp∆qu) agrees
with whether or not the wrong sign pathology was observed in simulation. The dotted red line indicates 1
on the y-axis, while the blue line indicates the average agreement probability over 1000 simulated data sets.
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where π0, π1 P p0, 1{2q. Letting ∆1 “ µ0|1 ´ µ1|1 and ∆0 “ µ0|0 ´ µ1|0, the moment equations become

ErYi | Xi “ 1s “ µ1|1 ` π1∆1, (C.1)

ErYi | Xi “ 0s “ µ1|0 ` π0∆0, (C.2)

VarrYi | Xi “ 1s “ σ2 ` π1p1´ π1q∆
2
1, (C.3)

VarrYi | Xi “ 0s “ σ2 ` π0p1´ π1q∆
2
0. (C.4)

We can estimate ∆1 via equations C.1 and C.3, and ∆0 via equations C.2 and C.4. If we define p “ PtXi “ 1u,
the population proportion that Xi “ 1, then we can write the overall ∆ as ∆ “ p∆1 ` p1 ´ pq∆0. The
adjusted estimator for overall ∆ is then:

p∆adj “ pp∆1 ` p1´ pqp∆0. (C.5)

Unsurprisingly, the MLE for the conditional difference in means, ∆0 and ∆1, exhibits the same pathologies
as the MLE for the overall ∆. We are simply fitting the same Gaussian mixture model twice on two
subsets of the data. In each case, the smaller sample size will tend to make the probability of a pathology
conditional on X higher than the unconditional probability. Table 2 gives an example for an N0 “ N1 “ 500,
π0 “ 0.45, π1 “ 0.15,∆0 “ 1.0,∆1 “ 0.5, and σ2 “ 1. The table shows the probability of each of the
nine pathology cases, with the rows representing the pathology status of p∆0, the columns representing the
pathology status of p∆1. In this setup, there is only a 31% probability that p∆0 and p∆1 are non-zero and the
correct sign, half the probability for the unconditional case.

Table 2: Joint pathology probabilities for the case of a binary covariate, Xi.

Xi “ 1

No Pathology Pile Up Wrong Sign
No Pathology 31% 18% 9%

Xi “ 0 Pile Up 0% 0% 0%
Wrong Sign 23% 13% 6%

Of course, in some extreme cases, conditioning on X can improve inference. For example, with sufficiently
large samples, conditioning on X can be beneficial if the overall ∆ is close to 0, but the conditional values of
∆x are relatively large in magnitude. In practice, however, it is difficult to know if these conditions indeed
hold.

C.1.2 Covariates with restrictions

There is an extensive literature on incorporating covariates into mixture models (e.g., Compiani and Kita-
mura, 2013; Henry et al., 2014). Particularly relevant for our application are mixtures of regression models,
such as in Huang and Yao (2012) and Huang et al. (2013). We focus here on some proposals in the context of
principal stratification. The most straightforward is to assume that X is predictive of stratum membership,
S, but is not predictive of Y conditional on S. This yields a standard instrumental variable-type estimator.
See Henry et al. (2014) for a recent discussion.

Yi | Xi “ 1
iid
„ π1N pµ0, σ

2q ` p1´ π1qN pµ1, σ
2q

Yi | Xi “ 0
iid
„ π0N pµ0, σ

2q ` p1´ π0qN pµ1, σ
2q

With this assumption, ∆0 “ ∆1, and we only need first moments to estimate ∆:

ErYi | Xi “ 1s “ µ0 ` π1∆, (C.6)

ErYi | Xi “ 0s “ µ0 ` π0∆. (C.7)
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Solving Equations C.6 and C.7 leads to

p∆iv “
m1|1 ´m1|0

π1 ´ π0
, (C.8)

where m1|x denotes the first sample moment for tYi : Xi “ xu. So long as π1 ´ π0 is large, p∆iv does not
exhibit the pathologies of the moment estimator without covariates. In this situation, the MLE that jointly
models the mixtures conditional on Xi “ 0 and on Xi “ 1 is generally well-behaved. Heuristically, the
MLE automatically incorporates different “identifying” sources of information. In this case, the conditional
independence of X and Y is much more informative than the Normal mixture structure. Therefore, the
resulting MLE is well-approximated by p∆iv rather than by p∆mom.

In practice, it is rare to find a covariate that is both predictive of type and conditionally independent of
the outcome. There are many possible relaxations that leverage the broader principal stratification structure;
namely, that we can observe the relationship between X and Y in the other treatment arm. One assumption
in the case of one-sided noncompliance, due to Jo (2002), is to assume that, given S, the treatment effect
does not vary by X. Many similar assumptions are possible (see, for example Mealli and Rubin, 2002; Ding
et al., 2011). Alternative approaches include principal score methods, which assume that, conditional on X,
type and outcome are independent (Jo and Stuart, 2009). Importantly, such assumptions provide identifying
information so that the resulting MLE does not need to rely on higher-order moments to estimate component
means.

C.2 Grid bootstrap for principal stratification model

In the full principal stratification model, we directly estimate the outcome means for Compliers and Never
Takers assigned to treatment, pµc1 and pµn1, and use the finite mixture model to estimate corresponding
outcome means for Compliers and Never Takers assigned to control, pµc0 and pµn0. Our goal is inference for
ITTc “ pµc1 ´ pµc0 and ITTn “ pµn1 ´ pµn0. While this is straightforward given estimates for µc0 and µn0, we
only have confidence sets for these means.

We therefore propose the following approach to obtaining p1´αq100% confidence sets for ITTc and ITTn:

• Use a grid bootstrap or test inversion to obtain a joint p1´ α{2q100% confidence set for µc0 and µn0,
which we can project into univariate confidence sets, CSα{2pµc0q and CSα{2pµn0q

• Directly obtain p1 ´ α{2q100% confidence intervals via the Normal distribution for µc1 and µn1,
CSα{2pµc1q and CSα{2pµn1q

• For ITTc (repeat for ITTn):

– If CSα{2pµc0q is not disjoint, obtain a p1´ αq100% confidence interval for ITTc:

CSUBα pITTcq “ CSUBα{2pµc1q ´ CSLBα{2pµc0q

CSLBα pITTcq “ CSLBα{2pµc1q ´ CSUBα{2pµc0q

– If CSα{2pµc0q is disjoint, repeat the above calculations for each separate segment and then take
the union

This yields valid confidence sets for both treatment effects of interest. If desired, we could incorporate
an additional Bonferroni correction to account for the two separate intervals.

Finally, if desired, we can extend this procedure to account for uncertainty in π and σ, which are nuisance
parameters in for the desired hypothesis tests. We can therefore use results from Berger and Boos (1994)
to obtain valid p-values in this context. First, we obtain a p1´ γq-level joint confidence set for CSγpπ, σ

2q,
such as via case-resampling bootstrap, with γ very small, such as γ “ 0.001. We obtain a valid p-value for,
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say, ∆, by taking the maximum p-value over CSγpπ, σ
2q plus a correction for the added uncertainty:

pγp∆0q “ sup
pπ,σ2qPCSγpπ,σ2q

pp∆0q ` γ.

See Nolen and Hudgens (2011) and Ding et al. (2016) for further discussion of the validity of this approach.

D Failure of resampling methods

Resampling methods, such as the case-resampling bootstrap, are common in finite mixture model settings.
For example, McLachlan and Peel (2004, Sec. 2.16.2) recommend using the bootstrap to improve estimation
of standard errors when the Fisher information yields a poor approximation (see also Grün and Leisch, 2004).
Others have suggested subsampling in similar settings (Andrews, 2000). Figure D.4 shows the coverage for
95% confidence sets based on the case-resampling and subsampling intervals. Clearly, the coverage is far
from nominal.

The form of p∆mom shows why the performance of these methods is so poor. As Bickel and Freedman (1981)
prove, for the bootstrap to be consistent in the iid context, the mapping from the underlying distribution of
the data to the distribution of the statistic must be continuous (see also Andrews, 2000). Clearly,

p∆mom “ sgnppκ3q

d

pκ2 ´ σ2

πp1´ πq

is not a continuous mapping from the sample to p∆mom, with a boundary at κ2 ě σ2 and a discontinuity
at κ3 “ 0.17 In the related case of the unit root problem, Mikusheva (2007) shows that other resampling
methods also fail, including subsampling and the m of n bootstrap. In the context of principal stratifica-
tion, Zhang et al. (2009) note that confidence intervals based on the bootstrap often fail when the likelihood
is multimodal. Frumento et al. (2016) offer additional discussion in this setting.

E Performance of grid bootstrap in misspecified models

As noted in Gelman (2011), intervals based off inverting hypothesis tests fail when the model is significantly
misspecified. There are two main ways the assumptions of the Gaussian mixture examined in the paper
can break down. First, the assumption of Gaussian tails can be incorrect. Second, the assumption of
uni- or bi-modality can be violated. Since problems are typical of misspecified models in many problems, we
examine these effects only briefly by simulating data from a mixture of t-distributions and a three-component
Gaussian mixture and finding the grid bootstrap intervals for this simulated data. As shown in Figure E.5
for the case of an underlying t-distribution, we see that the coverage of these intervals deteriorates as the
true distribution deviates from that which can be accurately approximated by a two-component Gaussian
mixture.

In particular, as the degree of freedom of the t-distribution decreases, approaching a Cauchy, the coverage
drops to 0 as the observed cumulants are extremely unlikely to have been generated from the assumed model.
As the degree of freedom of the t-distribution increases, the t-distribution approaches a Gaussian, causing
coverage to improve to exactness.

In the case of the three-component Gaussian mixture, ∆ is no longer estimable, as it does not have
meaning in context of the underlying model. Intuitively, the grid bootstrap interval will be nearly empty
when the underlying distribution is trimodal and thus difficult to match with a two-component Gaussian
mixture. In this case, the measure of the grid bootstrap interval could be thought of as a diagnostic of a
misspecified model. However, we advise that more robust measures of model fit, such as likelihood ratio

17In some promising recent work, Laber and Murphy (2011) explore bootstrap-type methods with non-continuous mappings.
We hope to explore this more in the future.

36



100 300 500

0.
0

0.
4

0.
8

∆ = 0.25 π = 0.2

N

p

100 300 500

0.
0

0.
4

0.
8

∆ = 0.5 π = 0.2

N

p

100 300 500

0.
0

0.
4

0.
8

∆ = 0.75 π = 0.2

N

p

100 300 500

0.
0

0.
4

0.
8

∆ = 1 π = 0.2

N

p

100 300 500

0.
0

0.
4

0.
8

∆ = 0.25 π = 0.325

N

p

100 300 500

0.
0

0.
4

0.
8

∆ = 0.5 π = 0.325

N

p

100 300 500

0.
0

0.
4

0.
8

∆ = 0.75 π = 0.325

N

p

100 300 500

0.
0

0.
4

0.
8

∆ = 1 π = 0.325

N
p

100 300 500

0.
0

0.
4

0.
8

∆ = 0.25 π = 0.45

N

p

100 300 500

0.
0

0.
4

0.
8

∆ = 0.5 π = 0.45

N

p

100 300 500

0.
0

0.
4

0.
8

∆ = 0.75 π = 0.45

N

p

100 300 500

0.
0

0.
4

0.
8

∆ = 1 π = 0.45

N

p

Figure D.4: Coverage probabilities for 95% confidence sets based on the case-resampling and subsampling
intervals. The blue line represents the case-resampling coverage probability, while the blue line represents
the subsampling coverage probability.
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Figure E.5: Coverage of ∆ “ µ0 ´ µ1 for various degrees of freedom of the (true) underlying t-distribution,
averaged over 1000 Monte Carlo simulations.

tests for the number of components of the mixture (Lindsay, 1989) be used when determining whether or
not to proceed with the grid bootstrap interval.

F Performance of Posterior Mean and Median

Bayesian inference for finite mixtures introduces some unique challenges for specifying priors (e.g., Grazian
and Robert, 2015). Nonetheless, heuristically, inference based on the likelihood alone should be similar to
inference for a posterior with a sufficiently vague prior. Thus, without an informative prior for tµ0, µ1u in
the two-component Gaussian mixture, the posterior mean and median should exhibit similar pathologies
to those exhibited by the MLE. We test this intuition using the bayesm package in R. Figure F.6 shows
histograms of the posterior mean of ∆ when the true ∆ is 0.5 and 1, π “ 0.3, and N “ 100. We use the
default priors of the bayesm package except in the case of the Dirichlet parameter, which is set to reflect that
π “ 0.3 is known (i.e., we assume a very informative prior). The histograms exhibit the same behavior as
the MLE of ∆. In particular, the estimator concentrates around 0 and seems unable to differentiate between
∆ ą 0 and ∆ ă 0.

Figure F.7 shows the corresponding plot for the distribution of the posterior median of ∆. As we can
see, the median also concentrates about 0 and appears unable to determine the sign of ∆.
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Figure F.6: Histograms of the posterior mean for ∆ calculated via MCMC draws from bayesm. The histogram
on the left is for ∆ “ 0.5, while the histogram on the right is for ∆ “ 1. Both histograms have N “ 100,
π “ 0.3, and σ “ 1.
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Figure F.7: Histograms of the posterior median for ∆ calculated via MCMC draws from bayesm. The
histogram on the left is for ∆ “ 0.5, while the histogram on the right is for ∆ “ 1. Both histograms have
N “ 100, π “ 0.3, and σ “ 1.

39



G Asymptotics

The goal of this section is to illustrate the proof of Proposition 1 given in Chen (1995), and our most basic
extension of that proof. We’ll start by restating the definitions for Op¨q, op¨q, Opp¨q, and opp¨q.

We start with the non-probabilistic definitions of Op¨q and op¨q.

Definition 1. Let fpnq and gpnq be functions for n P N. We say that f “ Opgq, if there exists a constant
c ă 8 such that

lim
nÑ8

|fpnq|

|gpnq|
ă c.

Definition 2. Let fpnq and gpnq be functions for n P N. We say that f “ opgq if

lim
nÑ8

|fpnq|

|gpnq|
“ 0.

We now state the probabilistic definitions of Opp¨q and opp¨q.

Definition 3. Let tXnunPN be a sequence of random variables and tanunPN be a sequence of constants. We
say that Xn “ Oppanq if the collection of random variables tXn{anunPN is stochastically bounded.

Definition 4. Let tXnunPN be a sequence of random variables and tanunPN be a sequence of constants. We
say that Xn “ oppanq if

lim
nÑ8

Xn{an “ 0

in probability.

G.1 Results

Here we present the two results of interest: Chen’s result (Proposition 1 from his 1995 paper) and our basic
extension of that result. The general setup is a two-component mixture model with generic location density
fpy, µq having mean µ. That is, we view Y as arising from

Y „ πfpy, µ0q ` p1´ πqfpy, µ1q,

with π P p0, 1q. Chen respecifies the model18 as

Y „ πfpy,´∆q ` p1´ πqfpy, c∆q, (G.1)

where c is a constant. Note that
ErY s “ ´π∆` cp1´ πq∆,

so that the requirement that Y has mean 0 is equivalent to

c “
π

1´ π
.

The following proposition is equivalent (up to notation) to Proposition 1 of Chen (1995).

18Note that Chen uses h in place of ∆ and specifies c “ 2.
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Proposition 1. Let Y1, . . . , Yn be i.i.d. from Equation G.1 with π “ 2
3 , c “ 2, and ∆ “ 0. That is, Y is

assumed to come from the model

Y „
2

3
fpy,´∆q `

1

3
fpy, 2∆q,

for ∆ “ 0. Further assume the density function fpy, µq satisfies three regularity conditions.

1.

E
ˇ

ˇ

ˇ

ˇ

f piqpY, µq

fpY, µq

ˇ

ˇ

ˇ

ˇ

2

ă 8 (G.2)

for i P t2, 3, 4u.

2. There exists a function gpyq such that

ˇ

ˇ

ˇ

ˇ

f p4qpY, µ1q

fpY, µ1q
´
f p4qpY, µ2q

fpY, µ2q

ˇ

ˇ

ˇ

ˇ

ď gpY q|µ1 ´ µ2|
ε, (G.3)

for some ε ą 0.

3.
Erg2pY qs ă 8. (G.4)

Then p∆n, the MLE of ∆ estimated from Y1, . . . , Yn, is Oppn
´1{4q.

We now describe our basic extension of Chen’s result.

Proposition 2. Let Y be as in Equation G.1 but with π “ 2
3 and c “ 2. However, instead of letting ∆ be fixed

at 0, substitute ∆n “ opn´1{4q. That is, let Yi,n for i P t1, . . . , nu and n P N come from the model

Yi,n „
2

3
N py,´∆nq `

1

3
N py, 2∆nq, (G.5)

with the variance of the Normal kernels fixed at 1.19 Then |p∆n ´ ∆n| is Oppn
´1{4q and |p∆n ´ ∆n| is not

oppn
´1{4q, where p∆n is the maximum-likelihood estimator of ∆n based on the data Y1,n, . . . , Yn,n.

G.2 Proofs

This section presents the proofs of the previous results. We start with an abbreviated version of Chen’s
proof, which relies on a Taylor expansion of the log-likelihood of ∆ around ∆ “ 0.

Proof. The first derivative of the log-likelihood for ∆, in terms of the general weight π and constant c given
in Equation G.1, is

l1p∆q “
n
ÿ

i“1

´πf 1pyi,´∆q ` cp1´ πqf 1pyi, c∆q

πfpyi,´∆q ` p1´ πqfpc∆q
. (G.6)

Note that the requirement on c for l1p0q “ 0 is equivalent to the condition for Y to have zero mean. Namely,
c “ π

1´π . Chen’s example satisfies this requirement with π “ 2
3 and c “ 2. Thus, l1p∆q “ 0 regardless of the

observed data. The second order derivative of the log-likelihood is

l2p∆q “
n
ÿ

i“1

πf2pyi,´∆q ` c2p1´ πqf2pyi, c∆q

πfpyi,´∆q ` p1´ πqfpc∆q
´

ˆ

´πf 1pyi,´∆q ` cp1´ πqf 1pyi, c∆q

πfpyi,´∆q ` p1´ πqfpc∆q

˙2

. (G.7)

19The proof runs with the variance of the Normal kernels fixed at σ2, but this case introduces tedious scale factors.
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Importantly, the second term in Equation G.7 vanishes when ∆ “ 0, leaving

l2p0q “
`

π ` c2p1´ πq
˘ f2pyi, 0q

fpyi, 0q
, (G.8)

which has expectation 0 when the true model has ∆ “ 0. Thus, the Fisher Information of ∆, when ∆ “ 0,
is 0. To be concise, we simply state the third and fourth derivatives of the likelihood evaluated at ∆ “ 0,

l3p0q “
n
ÿ

i“1

`

´π ` c3p1´ πq
˘ f3pyi, 0q

fpyi, 0q
(G.9)

and

lp4qp0q “
n
ÿ

i“1

`

π ` c4p1´ πq
˘ f p4qpyi, 0q

fpyi, 0q
´ 12

ˆ

f2pyi, 0q

fpyi, 0q

˙2

. (G.10)

Define

Ai “
f2pYi, 0q

fpYi, 0q
; Bi “

f p3qpYi, 0q

fpYi, 0q
; Ci “

f p4qpYi, 0q

fpYi, 0q
. (G.11)

Under the regularity conditions of Equations G.2, G.3, and G.4, Ai, Bi, and Ci have mean 0 and finite
variance when expectation is taken with respect to the model with ∆ “ 0. Thus, the sum of their first n
terms are Oppn

1{2q. Using Taylor’s theorem, lp∆q can be written as

lp∆q “ lp0q `∆2
n
ÿ

i“1

Ai `
1

3
∆3

n
ÿ

i“1

Bi ´
1

2
∆4

n
ÿ

i“1

A2
i `Oppn

1{2∆4q, (G.12)

where the regularity conditions in Equations G.3 and G.4 have been used to control the error term.
Differentiating with respect to ∆ and removing the root at ∆ “ 0, which asymptotically has probability ă 1
of being a maximum,20 the MLE of ∆ has two solutions

p∆ “

»

—

–

n
ÿ

i“1

Bi ˘

¨

˝

˜

n
ÿ

i“1

Bi

¸2

` 16
n
ÿ

i“1

A2
i

n
ÿ

i“1

Ai

˛

‚

1{2
fi

ffi

fl

ˆ

«

4
n
ÿ

i“1

A2
i

ff´1

p1` opp1qq. (G.13)

Because the n-term sum of A2
i is Oppnq, while the other n-term sums are Oppn

1{2q, this simplifies to

p∆ “ δ0

˜

n
ÿ

i“1

Ai

¸«

n
ÿ

i“1

A2
i

ff´1{2 « n
ÿ

i“1

Ai

ff1{2

r1` opp1qs “ Oppn
´1{4q. (G.14)

Our proof uses the same Taylor expansion as Chen’s proof. However, since in our model the true model
has ∆ “ ∆n rather than ∆ “ 0, the means of Ai, Bi, and Ci will not be 0; in particular, they will depend
on n. Our proof consists of showing that the n-term sums of Ai, Bi, and Ci are still Oppn

1{2q. We can then
simplify to the expression in Equation G.14.

Proof. We define Yi,n as in Equation G.5. We then define Ai,n, Bi,n, and Ci,n analagously to Equation G.15:

Ai,n “
f2pYi,n, 0q

fpYi,n, 0q
; Bi,n “

f p3qpYi,n, 0q

fpYi,n, 0q
; Ci,n “

f p4qpYi,n, 0q

fpYi,n, 0q
. (G.15)

20This result comes from the CLT applied to
řn
i“1 Ai., as the sign of l2p0q determines whether or not ∆ “ 0 is a maximizer.
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We compute these terms explicitly for the Normal kernel with variance 1, finding that

Ai,n “ Y 2
i,n ´ 1

Bi,n “ ´3Yi,n ` Y
3
i,n

Ci,n “ 3´ 6Y 2
i,n ` Y

4
i,n.

Using the moments of Yi,n and the fact that Y1,n, . . . , Yn,n are i.i.d., we have that

n
ÿ

i“1

Ai,n “ Op

´

maxtn∆2
n, n

1{2u

¯

;
n
ÿ

i“1

Ai,n ‰ op

´

n1{2
¯

n
ÿ

i“1

Bi,n “ Op

´

maxtn∆3
n, n

1{2u

¯

;
n
ÿ

i“1

Bi,n ‰ op

´

n1{2
¯

n
ÿ

i“1

Ci,n “ Op

´

maxtn∆4
n, n

1{2u

¯

;
n
ÿ

i“1

Ci,n ‰ op

´

n1{2
¯

.

For Chen’s expression in Equation G.14 to be valid, the n-term sums of Ai,n, Bi,n, and Ci,n need to be
Oppn

1{2q. This occurs when ∆n “ Opn´1{4q. If the means collapse more slowly, Chen’s expression is no
longer valid and we have no result. If the means collapse more rapidly (that is, ∆n “ opn´1{4q), then
parametric convergence of the maximum-likelihood estimator is lost, as the n-term sums of Ai,n, Bi,n, and
Ci,n are all still Oppn

1{2q but ∆n goes to 0 at a faster rate.

A more general result relaxes the assumptions on π and ∆n. As long as l1p0q “ 0, the above argument
will run with ∆n “ opn´1{4q as the critical rate, since the constants in the Taylor expansion will change, but
not the ultimate result. If l1p0q ‰ 0, the Fisher Information of the model for ∆ “ 0 will not necessarily be 0.
Theoretically, in this case normal asymptotics should kick in and the Oppn

´1{2q rate should be recovered.
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